Fast Marching and Geodesic Methods. Some Applications

Laurent D. COHEN

Directeur de Recherche CNRS
CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine
Place du Maréchal de Lattre de Tassigny 75016 Paris, France
Cohen@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~cohen
Some joint works with F. Benmansour, Y. Rouchdy, J. Mille, G. Peyré, H. Li , A. Yezzi,
Da Chen and J.M. Mirebeau.
Huawei, February 3rd, 2017

CERENMADE
UNIVERSITÉ PARIS
UMR CNRS 7534

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anisotropic Minimal Paths and Tubular model
- Finding contours as a set of minimal paths
- Application to 2D and 3D tree structures
- Geodesic Density for tree structures

Overview

- Anisotropic Minimal Paths and Tubular model
- Finding contours as a set of minimal paths
- Application to 2D and 3D tree structures
- Geodesic Density for tree structures

Paths of minimal energy

Looking for a path along which a feature Potential $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is minimal example: a vessel dark structure $\mathrm{P}=$ gray level
Input : Start point $p l=(x 1, y 1)$
End point $p 2=(x 2, y 2)$
Image
Output: Minimal Path

Minimal Paths: Eikonal Equation

$$
E(C)=\int_{0}^{L} P(C(s)) d s
$$

Potential $\mathrm{P}>0$ takes lower values near interesting features: on contours, dark structures, ...

STEP 1 : search for the surface of minimal action U of $p 1$ as the minimal energy integrated along a path between start point $p l$ and any point p in the image
Startpoint $C(0)=p 1$;

$$
U_{p 1}(p)=\inf _{C(0)=p 1 ; C(L)=p} E(C)=\inf _{C(0)=p 1 ; C(L)=p} \int_{0}^{L} P(C(s)) d s
$$

STEP 2: Back-propagation from the end point $p 2$ to the start point $p 1$:

$$
\text { Simple Gradient Descent along } U_{p 1}
$$

Minimal Paths: Eikonal Equation

STEP 1 : minimal action U of $p 1$ as the minimal energy integrated along a path between start point $p l$ and any point p in the image

Start point $C(0)=p 1$;

$$
U_{p 1}(p)=\inf _{C(0)=p 1 ; C(L)=p} E(C)=\inf _{C(0)=p 1 ; C(L)=p} \int_{0}^{L} P(C(s)) d s
$$

$\left\|\nabla U_{p 1}(x)\right\|=P(x)$ and $U_{p 1}(p 1)=0$
Example $\mathrm{P}=1, \mathrm{U}$ Euclidean distance to p 1 in general, U weighted geodesic distance to p1

Minimal paths - 2D simple examples

Examples of shortest paths on univalued or bivalued potential
Fermat Principle in Geometric Optics : Path followed by light minimizes time

$$
T=\frac{1}{c} \int_{p 1}^{p 2} n(C(s)) d s
$$

where $\mathrm{n}>1$ is refraction index $\mathrm{v}=\mathrm{c} / \mathrm{n}$

Snell-Descartes âaw

Minimal Paths and Front Propagation

Minimal Action $U_{p 0}(p)=\inf _{C(0)=p 0 ; C(L)=p} \int_{0}^{L} \widetilde{P}(C(s)) d s$
Front Propagation $\mathcal{L}(t)=\left\{p \in R^{2} / U_{p 0}(p)=t\right\}$
Evolution of t level set of U from p 0

$$
\frac{\partial \mathcal{L}(\sigma, t)}{\partial t}=\frac{1}{P(\mathcal{L}(\sigma, t))} \vec{n}(\sigma, t)
$$

n normal vector to a level set of U is in the direction of the Gradient of U, implies Eikonal Equation :

$$
\left\|\nabla U_{p 0}(x)\right\|=P(x) \text { and } U_{p 0}(p 0)=0
$$

FAST MARCHING in 2D:

very efficient algorithm $\mathrm{O}(\mathrm{NlogN})$ for Eikonal Equation

Introduced by Sethian / Tsistsiklis
Numerical approximation of $\mathrm{U}(\mathrm{xij})$ as the solution to the discretized problem with
upwind finite difference scheme

$$
\begin{aligned}
& \|\nabla U\|=\widetilde{P} \quad\left(\frac{\partial U}{\partial x}\right)^{2}+\left(\frac{\partial U}{\partial y}\right)^{2}=\tilde{P}^{2} \\
& \max \left(u-U\left(x_{i-1, j}\right), u-U\left(x_{i+1, j}\right), 0\right)^{2} \\
+ & \max \left(u-U\left(x_{i, j-1}\right), u-U\left(x_{i, j+1}\right), 0\right)^{2}=h^{2} \tilde{P}\left(x_{i, j}\right)^{2}
\end{aligned}
$$

This 2 nd order equation induces that :
action U at $\{i, j\}$ depends only of the neighbors that have lower actions.
Fast marching introduces order in the selection of the grid points for solving this numerical scheme.
Starting from the initial point p 1 with $\mathrm{U}=0$, the action computed at each point visited can only grow.

Level sets of U can be seen as a Front propagation outwards.

Fast Marching Algorithm (Sethian)

- Start: only \boldsymbol{p}_{0} is trial with $U=0$.
- Loop: p trial point with minimum U becomes alive. neighbors of \boldsymbol{p} become trial and are updated.

Fast Marching Algorithm

Initialization

J. A. Sethian

Fast Marching Algorithm

Itération \#1

- Find point $\mathbf{x}_{\text {min }}$
(Trial point with smallest value of \mathcal{U}).
- $\mathbf{x}_{\text {min }}$ becomes Alive.
- For each of 4 neighbors \mathbf{x} of point $\mathbf{x}_{\text {min }}$:

If \mathbf{x} is not Alive,
Estimate $\quad \mathcal{U}(\mathbf{x})$ with upwind scheme.
x becomes Trial.

> A fast marching level set method for monotonically advancing fronts.
P.N.A.S., 93:1591-1595, 1996.

Fast Marching Algorithm

Itération \#2

- Find point $\mathbf{x}_{\text {min }}$
(Trial point with smallest value of \mathcal{U}).
- $\mathbf{x}_{\text {min }}$ becomes Alive.
- For each of 4 neighbors \mathbf{x} of point $\mathbf{x}_{\text {min }}$:

If \mathbf{x} is not Alive,
Estimate $\quad \mathcal{U}(\mathbf{x})$ with upwind scheme.
x becomes Trial.

> A fast marching level set method for monotonically advancing fronts.
P.N.A.S., 93:1591-1595, 1996.

Fast Marching Algorithm

Itération \#k

- Find point $\mathbf{x}_{\text {min }}$
(Trial point with smallest value of \mathcal{U}).
- $\mathbf{x}_{\text {min }}$ becomes Alive.
- For each of 4 neighbors \mathbf{x} of point $\mathbf{x}_{\text {min }}$:

If \mathbf{x} is not Alive,
Estimate $\quad \mathcal{U}(\mathbf{x})$ with upwind scheme.
x becomes Trial.

> A fast marching level set method for monotonically advancing fronts.
P.N.A.S., 93:1591-1595, 1996.

Minimal Path between p1 and p2

Minimal Path between p1 and p2

Step \#1: U obtained by the FAST MARCHING ALGORITHM $\left\{\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\|=\tilde{\mathcal{P}}(\mathbf{x})\right.$ pour $\mathbf{x} \in \Omega$ $\mathcal{U}_{1}\left(\mathbf{p}_{1}\right)=0$

[^0]
Minimal Path between p1 and p2

Step \#1: U obtained by the FAST MARCHING ALGORITHM $\left\{\begin{aligned} &\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\|=\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\ & \mathcal{U}_{1}\left(\mathbf{p}_{1}\right)=0\end{aligned}\right.$

01002/2017 19:16 minimal action \mathcal{U}_{1} aurent D. COHEN, Huawei 2017

Minimal Path between p1 and p2

Step \#1

$$
\left\{\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}\right.
$$

Step \#2
gradient descent on $\quad \mathcal{U}_{1}$ for
extraction of minimal path $\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}$

$$
\left\{\begin{aligned}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s} & =-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0) & =\mathbf{p}_{2}
\end{aligned}\right.
$$

01/02/2017 19:16 minimal action $\mathcal{U}_{1}{ }^{\text {aurent D. COHEN, Huawei } 2017}$

Minimal Path between p1 and p2

minimal path

$$
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}=\min _{\gamma \in \mathcal{A}_{\mathbf{p}_{1}, \mathbf{P}_{2}}} \int_{\gamma} \tilde{\mathcal{P}}(\gamma(s)) \mathrm{d} s
$$

Is obtained by solving ODE:

$$
\left\{\begin{aligned}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s} & =-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0) & =\mathbf{p}_{2}
\end{aligned}\right.
$$

\Rightarrow simple gradient descent on \mathcal{U}_{1} from p_{2} to p_{1}

[^1]
Minimal Path between p1 and p2

Step \#1

$$
\left\{\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}\right.
$$

Step \#2
gradient descent on $\quad \mathcal{U}_{1}$ for
$\left\{\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s}=-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right)\right.$
extraction of minimal path $\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}$
$\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0)=\mathbf{p}_{2}$

01/02/2017 19:16 minimal action $\mathcal{U}_{1}{ }^{\text {aurent }}$ D. COHEN, Huawei 2017

Minimal Path between p1 and p2

Step \#1

$$
\left\{\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Step \#2 } \\
\text { gradient descent on } \\
\text { extraction of minimal path } \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}
\end{array} \quad \mathcal{U}_{1} \text { for }
\end{aligned} \quad\left\{\begin{array}{l}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s}=-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0)=\mathbf{p}_{2}
\end{array}\right.
$$

Minimal paths for 2D segmentation

Reference:

T. Deschamps and L. D. Cohen

Minimal paths in 3D images and application to virtual endoscopy.
Proceedings ECCVOO, Dublin, Ireland, 2000.

Link with Dynamic Programming

- Metrication error -

Fig. 22: An L^{1} norm cause the shortest path to suffer from errors of up to 41%. In this case both P_{1} and P_{2} are optimal, and will stay optimal no matter how much we refine the (4-neighboring) grid.

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anisotropic Minimal Paths and
- Finding contours as a set of minimal paths
- Application to 2D and 3D tree structures
- Geodesic Density for tree structures

Typical Retina Image

Two pairs of user given points

Extraction by 2D+radius minimal path model

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anisotropic Minimal Paths and Tubular model
- Finding contours as a set of minimal paths
- Application to 2D and 3D tree structures
- Geodesic Density for tree structures

Anisotropic Energy

$$
E(C)=\int_{0}^{L} P\left(C(s), C^{\prime}(s)\right) d s \quad \begin{aligned}
& \text { Considers the local orientations of the } \\
& \text { structures }
\end{aligned}
$$

$$
\begin{gathered}
P\left(C(s), C^{\prime}(s)\right)=\sqrt{C^{\prime}(s)^{T} H(C(s)) C^{\prime}(s)} \\
\text { Describes an infinitesimal } \\
\text { distance along an oriented pathway } C, \\
\text { relative to a metric } \mathrm{H}
\end{gathered}
$$

Anisotropic Energy: Eikonal Equation

$E(C)=\int_{0}^{L} \sqrt{C^{\prime}(s)^{T} H(C(s)) C^{\prime}(s)} d s$
Start point $C(0)=p 1 ; U_{p 1}(p)=\inf _{C(0)=p 1 ; C(L)=p} E(C)$

$$
\begin{gathered}
\left\|\nabla U_{p 1}(p)\right\|_{H(p)^{-1}}=\sqrt{\nabla U_{p 1}{ }^{T} H^{-1} \nabla U_{p 1}}=1 \\
\text { and } U_{p 1}(p 1)=0
\end{gathered}
$$

Geodesic Methods for Shape and Surface Processing, Gabriel Peyre and Laurent D. Cohen in Advances in Computational Vision and Medical Image Processing: Methods and Applications, Springer, 2009.

Anisotropic Energy: Gradient descent

$$
E(C)=\int_{0}^{L} \sqrt{C^{\prime}(s)^{T} H(C(s)) C^{\prime}(s)} d s
$$

$$
\text { Start point } C(0)=p 1 ; \quad U_{p 1}(p)=\inf _{C(0)=p 1 ; C(L)=p} E(C)
$$

$$
C^{\prime}(s)=-H^{-1}(C(s)) \nabla U_{p 1}(C(s))
$$

$$
\text { and } U_{p 1}(p 1)=0
$$

Geodesic Methods for Shape and Surface Processing, Gabriel Peyre and Laurent D. Cohen in Advances in Computational Vision and Medical Image Processing: Methods and Applications, Springer, 2009.

Anisotropic Energy: includes Isotropic case

$$
\begin{aligned}
& E(C)=\int_{0}^{L} \sqrt{C^{\prime}(s)^{T} H(C(s)) C^{\prime}(s)} d s \\
& \text { Start point } C(0)=p 1 ; \quad H(p)=P^{2}(p) I d \\
& \left\|\nabla U_{p 1}(p)\right\|=P \quad C^{\prime}(t)=-\nabla U_{p 1}(C(t))
\end{aligned}
$$

Geodesic Methods for Shape and Surface Processing, Gabriel Peyre and Laurent D. Cohen in Advances in Computational Vision and Medical Image Processing: Methods and Applications, Springer, 2009.

Anisotropy and Geodesics

Tensor eigen-decomposition:

$$
H(x)=\lambda_{1}(x) e_{1}(x) e_{1}(x)^{\mathrm{T}}+\lambda_{2}(x) e_{2}(x) e_{2}(x)^{\mathrm{T}} \quad \text { with } \quad 0<\lambda_{1} \leqslant \lambda_{2}
$$

Anisotropy and Geodesics

Tensor eigen-decomposition:

$$
H(x)=\lambda_{1}(x) e_{1}(x) e_{1}(x)^{\mathrm{T}}+\lambda_{2}(x) e_{2}(x) e_{2}(x)^{\mathrm{T}} \quad \text { with } \quad 0<\lambda_{1} \leqslant \lambda_{2} \text {, }\left\{\eta \backslash \eta^{*} H(x) \eta \leqslant 1\right\}
$$

Geodesics tend to follow $e_{1}(x)$.

Anisotropy and Geodesics

FIG. 2.14: Given an elliptic metric $\mathcal{M}=w_{1}^{2} \mathbf{e}_{r} \mathbf{e}_{r}^{T}+w_{2}^{2} \mathbf{e}_{\theta} \mathbf{e}_{\theta}^{T}$ with standard polar notations, influence of anisotropy ratio $\frac{w_{2}}{w_{1}}$ is shown.

Orientation-Dependent Energy (with Benmansour, CVPRâ09, IJCVâ 0)

$$
E(C)=\int_{0}^{L} P\left(C(s), C^{\prime}(s)\right) d s \quad \begin{aligned}
& \text { Considers the local orientations of the } \\
& \text { structures }
\end{aligned}
$$

Examples of 3D Minimal Paths for tubular shapes in 2D

Perceptual Grouping using Minimal Paths

The potential is an incomplete ellipse and 7 points are given (keypoints were found using a Furthest point strategy).

Reference:

L. D. Cohen

Multiple Contour Finding and Perceptual Grouping using Minimal Paths. Journal of Mathematical Imaging and Vision, 14:225-236, 2001.

Reference:

L. D. Cohen

Multiple Contour Finding and Perceptual Grouping using Minimal Paths. Journal of Mathematical Imaging and Vision, 14:225-236, 2001.

Perceptual Grouping using Minimal Paths

Perceptual Grouping using Minimal Paths

Using the orientation with anisotropic geodesics

[^2]
Application Endoscopie Virtuelle (collaboration Philips Recherche)

Curvature Penalized Minimal Path Method with A Finsler Metric

with Da Chen and JM Mirebeau, 2015-2016

- The metric may depend on the orientation
- Orientation-lifted metric: the curve length of Euler elastica can be exactly computed by this metric

Curvature Penalized Minimal Path Method with A Finsler Metric

Curvature Penalized Minimal Path Method with A Finsler Metric

Curvature Penalized Minimal Path Method with A Finsler Metric

Curvature Penalized Minimal Path Method with A Finsler Metric

Fig. 8 Geodesics extraction results using the proposed Finsler metric. Red and green dots are the initial and end positions respectively. Arrows indicate the corresponding tangents.

Curvature Penalized Minimal Path Method with A Finsler Metric

Fig. 9 Comparative closed contour detection results. Column 1: edge saliency map. Columns 2-5: results from the IR metric, the AR metric, the IOLR metric and the proposed Finsler metric. In Column 5, arrows indicate the tangents for the corresponding physical positions denoted by dots.

Curvature Penalized Minimal Path Method with A Finsler Metric

Isotropic vs. Anisotropic Meshing

Anisotropic Meshing

01/02/2017 19:16
Laurent D. COHEN, Huawei 2017

Anisotropic Meshing

Examples of Anisotropic Meshing

controls density and orientation of triangles

Geodesic methods for shape recognition

 Based on distribution (histogram) of geodesic distances

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anisotropic Minimal Paths and Tubular model
- Application to 2D and 3D tree structures
- Geodesic Density for tree structures

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Adding keypoints: Stopping criterion

```
The propagation must be stopped as soon as the domain visited by the fronts has the same topology as a ring.
```


Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Keypoints and 3D Minimal Paths for tubular shapes in 2D

(with Li and Yezzi, MICCAIÔ)9)

Fig. 1. The entire multi-branch structure extraction is reduced to finding structures between all adjacent key point pairs. The 4D path length D between each key point pair is equal to $d_{\text {step }}$. For easier visualization, the same concept is illustrated here using circles instead of spheres.

Keypoints and 3D Minimal Paths for tubular shapes in 2D

2D in space , 1D for radius of vessel

Keypoints and 3D Minimal Paths for tubular shapes in 2D

Keypoints and 3D Minimal Paths for tubular shapes in 2D

Fig. 3. Segmentation results via the proposed method on another 2D projection angiogram image. Panels from left to right show the initial point and the detected iterative key points and the detected vessel surfaces.

Automatic Keypoint Method

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anisotropic Minimal Paths and Tubular model
- Finding contours as a set of minimal paths
- Application to 2D and 3D tree structures

■
Geodesic Density for tree structures

Geodesic Density

Geodesic Density: Real example

Geodesic Density: adaptive voting

Adaptive voting : 1000 end points

Geodesic Density: adaptive voting

Adaptive voting : 1000 end points

Conclusion

- Minimally interactive tools for vessels and vascular tree segmentation (tubular branching structures)
- User provides only one initial point and sometimes second end point or stopping parameter
- Fast and efficient propagation algorithm
- Models may include orientation and scale of vessels
- Voting approach as a powerful tool to find the structure, which can be completed with other approach.

Thank you!

Publications on your screen: www.ceremade.dauphine.fr/~cohen

[^0]: L. D. Cohen, R. Kimmel

 Global minimum for active contour models : a minimal path approach. International Journal of Computer Vision, 25:57-78, 1997.

[^1]: L. D. Cohen, R. Kimmel

 Global minimum for active contour models : a minimal path approach. International Journal of Computer Vision, 25:57-78, 1997.

[^2]: Anisotropic Geodesics for Perceptual Grouping and Domain Meshing. Sebastien Bougleux and Gabriel
 Peyrl'e and Laurent D. Cohen. Proc. tenth European Conference on Computer Vision (ECCV'08)\}, Marseille, France, October 12-18, 2008.
 01/02/2017 19:16
 Laurent D. COHEN, Huawei 2017
 147

