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Fast-Marching: the Semi-Lagrangian approach

Let X be a finite set, and U : X — R be the unknown.

A fixed point problem AU = U is FM-solvable. . .
provided operator A : RX — RX obeys, YU,V € RX, VA € R
» (Monotony) U <V = AU < AV.
» (Causality) Us* = V<A = (AU)SN = (AV)SA

Example : Dijkstra's algorithm

For each p € X let Neigh(p) C X be a collection of neighbors,
and d(p, q) the corresponding edge lengths.

A = i 1) .
U(p) e U(q) +d(a, p)
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Fast-Marching: the Hamiltonian approach
Let X be a finite set, and s : X — R, be a speed function.
And inverse problem HU = s? is FM-solvable. . .
provided operator H has the following form

HU(p) := H(p, U(p), (U(p) — U(q))qex)

and satisfies
» (Monotony) # is non-decreasing w.r.t. 2nd and 3rd var.
» (Causality) H only depends on the positive part of the
third variable(s).

Example : upwind discretization of | Vul|? = s?

Assume that X C hZ9 is a cartesian grid, and let (e;) be the
canonical basis. Define for U € RX, p € X

HU(p) := h™2 > max{0, U(p)—U(p-+he;), U(p)—U(p—he;)}>.
1<i<d
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What we want to solve

Setting: Finsler geometry

Consider a domain, a metric, and a speed function
QCRY, F:QxR?I—=[0,400], s:Q—]0,00]

Define for each smooth path 7 : [0,1] — Q

length ~(~y / Fye) (v ( ())

Objective: compute a front arrival time
Given a set of seeds S C Q compute v : Q — R defined by

u(p) := inf{lengthz(7); 7(0) € 5,~(1) = p},

and extract the corresponding minimal paths.



Anisotropic
Fast-
Marching

Jean-Marie
Mirebeau

The semi-
Lagrangian

di . .
paraciem The semi-Lagrangian

paradigm



Anisotropic
Fast-
Marching

Jean-Marie
Mirebeau

The semi-
Lagrangian
paradigm

Using notations Q (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).



Anisotropic
Fast-
Marching

Jean-Marie
Mirebeau

The semi-
Lagrangian
paradigm

Using notations Q (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman's optimality principle

geVCQ\S = u(g)= inf u(p)+dr(p,q).
pedV

where dr(q, p) is the length of the shortest path from p to g.



Anisotropic
Fast-
Marching

Jean-Marie
Mirebeau

The semi-
Lagrangian
paradigm

Using notations Q (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman's optimality principle
GeEVCOQ\S = u(g) = inf u(p)+ dr(p,q).
pedV

where dr(q, p) is the length of the shortest path from p to g.

Discretization
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Using notations Q (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman's optimality principle
GeEVCOQ\S = u(g) = inf u(p)+ dr(p,q).
pedV

where dr(q, p) is the length of the shortest path from p to g.

Discretization
Let X C Q and 0X C RY\ Q be finite sets. Let V/(p) be a
polytope enclosing each p € X, with vertices in X U 9X. Define

AU(x) = qerg\i/r;p) Folg—p) + Ly U(q),

where Iy, denotes piecewise linear interpolation.

» Monotony holds by construction.

» Causality is equivalent to the acuteness of V(p) w.r.t. Fp.
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Figure: Illustration of Bellman’s optimality principle, and of its
discretization.
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A polytope design problem

Given an asymmetric norm N on R9, find a polytope V which
» |s acute with respect to N. (= causality)
» Has its vertices in Z9. (= cartesian grid discretizations)
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Definition (Acute polytope V w.r.t. a metric F)
A polytope V centered at 0 is said F-acute iff for any v, w in a

common face of 9V.

» (v,w) >0, assuming F(e) := Al|e||. (Euclidean)
» (v, Mw) > 0 assuming F(e) := (e, Me). (Riemannian)
» (v,VF(w)) >0 and (w, VF(v)) > 0 in general (Finsler)

General constructions proposed by Sethian & Vladimirsky, Alton
& Mitchell. But completely impractical. (u? vertices, u ~ 10.)

A polytope design problem

Given an asymmetric norm N on R9, find a polytope V which
» |s acute with respect to N. (= causality)
» Has its vertices in Z9. (= cartesian grid discretizations)

» Has few vertices. (= complexity)
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General constructions proposed by Sethian & Vladimirsky, Alton
& Mitchell. But completely impractical. (u? vertices, u ~ 10.)

A polytope design problem

Given an asymmetric norm N on R9, find a polytope V which
» |s acute with respect to N. (= causality)
» Has its vertices in Z9. (= cartesian grid discretizations)

v

Has few vertices. (= complexity)

v

Has small vertices. (= accuracy)
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Figure: Some level sets of 2D and 3D riemannian distance maps.



Anisotropic
Fast-
Marching

Jean-Marie
Mirebeau

The semi-
Lagrangian
paradigm

Figure: Segmentation of retina vessels. Aa. Sanguinetti, E. Bekkers,
R. Duits, M.H.J. Janssen, A. Mashtakov, J.M. Mirebeau,
Sub-Riemannian Fast Marching in SE(2), CIARP 2015.
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Figure: Shortest way out of centre Pompidou, using a Reeds-Shepp
sub-riemannian metric. Note the many cusps.
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Figure: Finsler metrics can encode asymmetrical situations, e.g.
ascent is harder than descent
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Figure: Shortest way out of centre Pompidou, using a Reeds-Shepp
sub-riemannian metric modified to remove the reverse gear.
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Conclusion on Semi-Lagrangian

Pros:
» Geometrical interpretation.
» Stencil recipes for 2D Finsler or 3D riemannian metrics on
grids.
Cons:
» No good stencil recipe for 3D Finsler metrics, or for
unstructuted meshes.
» A bit costly (iterate over all facets of V/(p) of all dims).

» Rather complex implementation in dimension > 3.
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Generalized eikonal equation
Front arrival times are the unique viscosity solution to

Hp(Vu(p)) = s(p)?,

with u =0 on S and outflow conditions on 0.
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Generalized eikonal equation
Front arrival times are the unique viscosity solution to

Hp(Vu(p)) = s(p)?,

with u =0 on S and outflow conditions on Q2. The

The hamiltonian is here defined by
Hamiltonian
paradigm 1

Discrete point set: a grid of scale h > 0

X :=Qnhzd, X := (RY\ Q) n hze.
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where ¢;, f; € Z, aj, Bj > 0. Or more generally in the form

H(v) = Ho(v) + max H(v).

15k<k

Hamiltonian

paradigm where Hg, - - , Hk are as above.

Upwind differences discretization
Approximate H(Vu(p)) by inserting

max{0, (Vu(p), &)} ~ h~ max{0, U(p) — U(p — he;)}

[(Vu(p), e)| = h™* max{0, U(p)—U(p—he;), U(p)—U(p+hei)}
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D = Z e R e
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program L(D)

P:={MeS Ve Z Tr(Me®e) > 1},
£(D) := min Tr(DM)

v

Voronoi proved feasibility of £(D), for all D € 5.
Vertices of P are called perfect forms, known in dim < 7.

Kuhn-Tucker optimality conditions: there exists
(N, e) € (Ry x 29, where d' = d(d + 1)/2, such that

D = Z e R e

1<i<d’

v

The
Hamiltonian
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v

v

Represents the Riemannian hamiltonian

H(v) := (v, Dv) Z Ai(v, )2
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Curvature penalized shortest paths
Define the cost of a unit speed curve v : [0, T] — U, with

curvature K, as -
dt
| e o1

We consider three curvature costs. PDE H(Vu) = s, posed on
the lifted domain Q = U x S!, with points p = (x, ).

» Reeds-Shepp model C(k) := V1 + k2

> Euler elastica model C(x) := 1 + x?

» Dubins model C(k) :=1if k <1, and +oo otherwise.
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Hixo)(%0) = (%, n(0)) + 07

> Euler elastica model C(x) := 1 + x?

» Dubins model C(k) :=1if k <1, and +oo otherwise.
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Curvature penalized shortest paths
Define the cost of a unit speed curve v : [0, T] — U, with

curvature K, as -
dt
| e o1

We consider three curvature costs. PDE H(Vu) = s, posed on
the lifted domain Q = U x S!, with points p = (x, ).

» Reeds-Shepp model C(k) := V1 + k2 (with rev. gear)
,H(X,G)()?: é) = <)?7 n(9)>2 + é2

> Euler elastica model C(x) := 1 + x?

» Dubins model C(k) :=1if k <1, and +oo otherwise.
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We consider three curvature costs. PDE H(Vu) = s, posed on
the lifted domain Q = U x S!, with points p = (x, ).
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JRCOFE

We consider three curvature costs. PDE H(Vu) = s, posed on
the lifted domain Q = U x S!, with points p = (x, ).

» Reeds-Shepp model C(k) := V1 + k2 (with rev. gear)
X,

1H—2:1i|tonian 7-[(X,G)( é\) = <)?’ n(9)>2 + éz
paradigm
> Euler elastica model C(x) := 1 + x?
~ 1 \?
Ho(.0) = (%0000 + /(5,002 + 62

» Dubins model C(k) :=1if k <1, and +oo otherwise.
Hixa)(2.6) = (%.0(0))% + 02
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ArzecPe Qualitative features of the models

Marching

Jean-Marie
Mirebeau

The
Hamiltonian
paradigm

Reeds-Shepp Elastica Dubins

» Reeds-Shepp's car can rotate in place (w.o. rev gear)

» Euler's car optimal paths are smooth.

» Dubin's car has a turning radius of 1.



ArzecPe Qualitative features of the models

Marching

Jean-Marie
Mirebeau

The
Hamiltonian
paradigm

Reeds-Shepp (rev. gear)  Elastica Dubins

» Reeds-Shepp's car can rotate in place (w.o. rev gear), or
do cusps (with rev gear).

» Euler's car optimal paths are smooth.

» Dubin's car has a turning radius of 1.



ArreecPe Conclusion: Hamiltonian approach

Marching

Jean-Marie
Mirebeau

Pros:
» Applies to a variety of metrics.

» Easy to implement.

The » Cheap numerically

Hamiltonian i . ; .. ..

paradigm (Maln cost Is maintaining the priority queue)
Cons:

» Hard to adapt to unstructured grids.
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