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Fast-Marching: the Semi-Lagrangian approach

Let X be a finite set, and U : X → R be the unknown.

A fixed point problem ΛU ≡ U is FM-solvable. . .
provided operator Λ : RX → RX obeys, ∀U,V ∈ RX , ∀λ ∈ R

I (Monotony) U ≤ V ⇒ ΛU ≤ ΛV .
I (Causality) U<λ = V<λ ⇒ (ΛU)≤λ = (ΛV )≤λ.

Example : Dijkstra’s algorithm
For each p ∈ X let Neigh(p) ⊆ X be a collection of neighbors,
and δ(p, q) the corresponding edge lengths.

ΛU(p) := min
q∈Neigh(p)

U(q) + δ(q, p).
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Fast-Marching: the Hamiltonian approach
Let X be a finite set, and s : X → R+ be a speed function.

And inverse problem HU ≡ s2 is FM-solvable. . .
provided operator H has the following form

HU(p) := H(p, U(p), (U(p)− U(q))q∈X ),

and satisfies

I (Monotony) H is non-decreasing w.r.t. 2nd and 3rd var.
I (Causality) H only depends on the positive part of the

third variable(s).

Example : upwind discretization of ‖∇u‖2 = s2

Assume that X ⊆ hZd is a cartesian grid, and let (ei ) be the
canonical basis. Define for U ∈ RX , p ∈ X

HU(p) := h−2
∑

1≤i≤d
max{0,U(p)−U(p+hei ),U(p)−U(p−hei )}2.
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1≤i≤d

(
∂U

∂xi
(p)

)2

= ‖∇U‖2.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Fast-Marching: the Hamiltonian approach
Let X be a finite set, and s : X → R+ be a speed function.

And inverse problem HU ≡ s2 is FM-solvable. . .
provided operator H has the following form

HU(p) := H(p, U(p), (U(p)− U(q))q∈X ),

and satisfies
I (Monotony) H is non-decreasing w.r.t. 2nd and 3rd var.

I (Causality) H only depends on the positive part of the
third variable(s).

Example : upwind discretization of ‖∇u‖2 = s2

Assume that X ⊆ hZd is a cartesian grid, and let (ei ) be the
canonical basis. Define for U ∈ RX , p ∈ X

HU(p) := h−2
∑

1≤i≤d
max{0,U(p)−U(p+hei ),U(p)−U(p−hei )}2.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Fast-Marching: the Hamiltonian approach
Let X be a finite set, and s : X → R+ be a speed function.

And inverse problem HU ≡ s2 is FM-solvable. . .
provided operator H has the following form

HU(p) := H(p, U(p), (U(p)− U(q))q∈X ),

and satisfies
I (Monotony) H is non-decreasing w.r.t. 2nd and 3rd var.
I (Causality) H only depends on the positive part of the

third variable(s).

Example : upwind discretization of ‖∇u‖2 = s2

Assume that X ⊆ hZd is a cartesian grid, and let (ei ) be the
canonical basis. Define for U ∈ RX , p ∈ X

HU(p) := h−2
∑

1≤i≤d
max{0,U(p)−U(p+hei ),U(p)−U(p−hei )}2.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Fast-Marching: the Hamiltonian approach
Let X be a finite set, and s : X → R+ be a speed function.

And inverse problem HU ≡ s2 is FM-solvable. . .
provided operator H has the following form

HU(p) := H(p, U(p), (U(p)− U(q))q∈X ),

and satisfies
I (Monotony) H is non-decreasing w.r.t. 2nd and 3rd var.
I (Causality) H only depends on the positive part of the

third variable(s).

Example : upwind discretization of ‖∇u‖2 = s2

Assume that X ⊆ hZd is a cartesian grid, and let (ei ) be the
canonical basis. Define for U ∈ RX , p ∈ X

HU(p) := h−2
∑

1≤i≤d
max{0,U(p)−U(p+hei ),U(p)−U(p−hei )}2.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

What we want to solve

Setting: Finsler geometry
Consider a domain, a metric, and a speed function

Ω ⊆ Rd , F : Ω× Rd → [0,+∞], s : Ω→]0,∞[.

Define for each smooth path γ : [0, 1]→ Ω

lengthF (γ) :=

∫ 1

0
Fγ(t)(γ̇(t))

dt
s(γ(t))

.

Objective: compute a front arrival time
Given a set of seeds S ⊆ Ω compute u : Ω→ R defined by

u(p) := inf{lengthF (γ); γ(0) ∈ S , γ(1) = p},

and extract the corresponding minimal paths.
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Using notations Ω (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman’s optimality principle

q ∈ V ⊆ Ω \ S ⇒ u(q) = inf
p∈∂V

u(p) + dF (p, q).

where dF (q, p) is the length of the shortest path from p to q.

Discretization
Let X ⊆ Ω and ∂X ⊆ Rd \ Ω be finite sets. Let V (p) be a
polytope enclosing each p ∈ X , with vertices in X ∪ ∂X . Define

ΛU(x) = min
q∈∂V (p)

Fp(q − p) + IV (p) U(q),

where IV denotes piecewise linear interpolation.

I Monotony holds by construction.
I Causality is equivalent to the acuteness of V (p) w.r.t. Fp.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Using notations Ω (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman’s optimality principle

q ∈ V ⊆ Ω \ S ⇒ u(q) = inf
p∈∂V

u(p) + dF (p, q).

where dF (q, p) is the length of the shortest path from p to q.

Discretization
Let X ⊆ Ω and ∂X ⊆ Rd \ Ω be finite sets. Let V (p) be a
polytope enclosing each p ∈ X , with vertices in X ∪ ∂X . Define

ΛU(x) = min
q∈∂V (p)

Fp(q − p) + IV (p) U(q),

where IV denotes piecewise linear interpolation.

I Monotony holds by construction.
I Causality is equivalent to the acuteness of V (p) w.r.t. Fp.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Using notations Ω (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman’s optimality principle

q ∈ V ⊆ Ω \ S ⇒ u(q) = inf
p∈∂V

u(p) + dF (p, q).

where dF (q, p) is the length of the shortest path from p to q.

Discretization
Let X ⊆ Ω and ∂X ⊆ Rd \ Ω be finite sets. Let V (p) be a
polytope enclosing each p ∈ X , with vertices in X ∪ ∂X . Define

ΛU(x) = min
q∈∂V (p)

Fp(q − p) + IV (p) U(q),

where IV denotes piecewise linear interpolation.

I Monotony holds by construction.
I Causality is equivalent to the acuteness of V (p) w.r.t. Fp.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Using notations Ω (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman’s optimality principle

q ∈ V ⊆ Ω \ S ⇒ u(q) = inf
p∈∂V

u(p) + dF (p, q).

where dF (q, p) is the length of the shortest path from p to q.

Discretization
Let X ⊆ Ω and ∂X ⊆ Rd \ Ω be finite sets. Let V (p) be a
polytope enclosing each p ∈ X , with vertices in X ∪ ∂X . Define

ΛU(x) = min
q∈∂V (p)

Fp(q − p) + IV (p) U(q),

where IV denotes piecewise linear interpolation.

I Monotony holds by construction.

I Causality is equivalent to the acuteness of V (p) w.r.t. Fp.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Using notations Ω (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Bellman’s optimality principle

q ∈ V ⊆ Ω \ S ⇒ u(q) = inf
p∈∂V

u(p) + dF (p, q).

where dF (q, p) is the length of the shortest path from p to q.

Discretization
Let X ⊆ Ω and ∂X ⊆ Rd \ Ω be finite sets. Let V (p) be a
polytope enclosing each p ∈ X , with vertices in X ∪ ∂X . Define

ΛU(x) = min
q∈∂V (p)

Fp(q − p) + IV (p) U(q),

where IV denotes piecewise linear interpolation.

I Monotony holds by construction.
I Causality is equivalent to the acuteness of V (p) w.r.t. Fp.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

x

y

Γ
¶V

¶W

p
q

¶VHxL

Figure: Illustration of Bellman’s optimality principle, and of its
discretization.
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Definition (Acute polytope V w.r.t. a metric F )
A polytope V centered at 0 is said F -acute iff for any v ,w in a
common face of ∂V .

I 〈v ,w〉 ≥ 0, assuming F (e) := λ‖e‖. (Euclidean)
I 〈v ,Mw〉 ≥ 0 assuming F (e) := 〈e,Me〉. (Riemannian)
I 〈v ,∇F (w)〉 ≥ 0 and 〈w ,∇F (v)〉 ≥ 0 in general (Finsler)

General constructions proposed by Sethian & Vladimirsky, Alton
& Mitchell. But completely impractical. (µd vertices, µ ≈ 10.)

A polytope design problem
Given an asymmetric norm N on Rd , find a polytope V which

I Is acute with respect to N. (⇒ causality)

I Has its vertices in Zd . (⇒ cartesian grid discretizations)
I Has few vertices. (⇒ complexity)
I Has small vertices. (⇒ accuracy)
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Definition (Acute polytope V w.r.t. a metric F )
A polytope V centered at 0 is said F -acute iff for any v ,w in a
common face of ∂V .

I 〈v ,w〉 ≥ 0, assuming F (e) := λ‖e‖. (Euclidean)
I 〈v ,Mw〉 ≥ 0 assuming F (e) := 〈e,Me〉. (Riemannian)
I 〈v ,∇F (w)〉 ≥ 0 and 〈w ,∇F (v)〉 ≥ 0 in general (Finsler)

General constructions proposed by Sethian & Vladimirsky, Alton
& Mitchell. But completely impractical. (µd vertices, µ ≈ 10.)

A polytope design problem
Given an asymmetric norm N on Rd , find a polytope V which

I Is acute with respect to N. (⇒ causality)
I Has its vertices in Zd . (⇒ cartesian grid discretizations)
I Has few vertices. (⇒ complexity)

I Has small vertices. (⇒ accuracy)
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Voronoi-diagrams for 3D Riemannian metrics

Needle-like Plate-like
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Figure: Some level sets of 2D and 3D riemannian distance maps.
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Figure: Segmentation of retina vessels. � G. Sanguinetti, E. Bekkers,
R. Duits, M.H.J. Janssen, A. Mashtakov, J.M. Mirebeau,
Sub-Riemannian Fast Marching in SE (2), CIARP 2015.



Anisotropic
Fast-

Marching

Jean-Marie
Mirebeau

What exactly
can solve the
Fast-
Marching
Algorithm ?

The semi-
Lagrangian
paradigm

The
Hamiltonian
paradigm

Figure: Shortest way out of centre Pompidou, using a Reeds-Shepp
sub-riemannian metric. Note the many cusps.
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Stencil refinement strategy for 2D Finsler metrics
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A

B

Figure: Finsler metrics can encode asymmetrical situations, e.g.
ascent is harder than descent
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Figure: Shortest way out of centre Pompidou, using a Reeds-Shepp
sub-riemannian metric modified to remove the reverse gear.
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Conclusion on Semi-Lagrangian

Pros:
I Geometrical interpretation.
I Stencil recipes for 2D Finsler or 3D riemannian metrics on

grids.
Cons:

I No good stencil recipe for 3D Finsler metrics, or for
unstructuted meshes.

I A bit costly (iterate over all facets of V (p) of all dims).
I Rather complex implementation in dimension ≥ 3.
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What exactly can solve the Fast-Marching Algorithm ?

The semi-Lagrangian paradigm

The Hamiltonian paradigm
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Using notations Ω (domain), S (seeds), u (front arrival time),
F (metric), s (speed function).

Generalized eikonal equation
Front arrival times are the unique viscosity solution to

Hp(∇u(p)) = s(p)2,

with u = 0 on S and outflow conditions on ∂Ω.

The
hamiltonian is here defined by

1
2
Hp(v) := sup

w∈Rd

〈v ,w〉 − 1
2
Fp(w)2.

Discrete point set: a grid of scale h > 0

X := Ω ∩ hZd , ∂X := (Rd \ Ω) ∩ hZd .
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Sum of squares representation of the Hamiltonian
Express or approximate v 7→ Hp(v) in the form

H(v) =
∑

1≤i≤I
αi max{0, 〈v , ei 〉}2 +

∑
1≤j≤J

βj〈v , fj〉2,

where ei , fj ∈ Zd , αi , βj ≥ 0. Or more generally in the form

H(v) = H0(v) + max
1≤k≤K

Hk(v).

where H0, · · · ,HK are as above.

Upwind differences discretization
Approximate H(∇u(p)) by inserting

max{0, 〈∇u(p), ei 〉} ≈ h−1 max{0,U(p)− U(p − hei )}

|〈∇u(p), ei 〉| ≈ h−1 max{0,U(p)−U(p−hei ),U(p)−U(p+hei )}
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Riemannian hamiltonians and Voronoi’s reduction
I Voronoi introduced the following polytope P and linear

program L(D)

P := {M ∈ S++
d ; ∀e ∈ Zd , 〈e,Me〉 ≥ 1},

L(D) := min
M∈P

Tr(DM).

I Voronoi proved feasibility of L(D), for all D ∈ S++
d .

I Vertices of P are called perfect forms, known in dim ≤ 7.
I Kuhn-Tucker optimality conditions: there exists

(λi , ei ) ∈ (R+ × Zd)d
′
, where d ′ = d(d + 1)/2, such that

D =
∑

1≤i≤d ′

λiei ⊗ ei .

I Represents the Riemannian hamiltonian

H(v) := 〈v ,Dv〉 =
∑

1≤i≤d ′

λi 〈v , ei 〉2
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Curvature penalized shortest paths
Define the cost of a unit speed curve γ : [0,T ]→ U, with
curvature κ, as ∫ T

0
C(κ(t))

dt
s(γ(t))

We consider three curvature costs. PDE H(∇u) = s, posed on
the lifted domain Ω = U × S1, with points p = (x , θ).

I Reeds-Shepp model C(κ) :=
√
1 + κ2

(with rev. gear)

H(x ,θ)(x̂ , θ̂) = 〈x̂ , n(θ)〉2 + θ̂2

I Euler elastica model C(κ) := 1 + κ2

H(x ,θ)(x̂ , θ̂) =
1
4

(
〈x̂ , n(θ)〉+

√
〈x̂ , n(θ)〉2 + θ̂2

)2

I Dubins model C(κ) := 1 if κ ≤ 1, and +∞ otherwise.

H(x ,θ)(x̂ , θ̂) = 〈x̂ , n(θ)〉2+ + θ̂2
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Qualitative features of the models

Reeds-Shepp

(rev. gear)

Elastica Dubins

I Reeds-Shepp’s car can rotate in place (w.o. rev gear)

, or
do cusps (with rev gear).

I Euler’s car optimal paths are smooth.
I Dubin’s car has a turning radius of 1.
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Conclusion: Hamiltonian approach

Pros:
I Applies to a variety of metrics.
I Easy to implement.
I Cheap numerically

(Main cost is maintaining the priority queue)
Cons:

I Hard to adapt to unstructured grids.
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