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Geodesic computation on a graph

2

Graph: (V,E), V = {1, . . . , n}, E ⇢ V 2 (symmetric).

Cost: (wi,j)(i,j)2E , wi,j > 0.

Path: � = (�1, . . . , �K), (�k, �k+1) 2 E.
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Length: L(�)
def.
=

PK�1
k=1 w�k,�k+1 .

Geodesic distance:

d(x, y) = min
�1=x,�K=y

L(�).
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Geodesic computation on a graph

2

Graph: (V,E), V = {1, . . . , n}, E ⇢ V 2 (symmetric).

Cost: (wi,j)(i,j)2E , wi,j > 0.

Path: � = (�1, . . . , �K), (�k, �k+1) 2 E.

Length: L(�)
def.
=

PK�1
k=1 w�k,�k+1 .

Geodesic distance:

d(x, y) = min
�1=x,�K=y

L(�).

Di�culty: metrication error.
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Connections with Maxflow Problems 

3

div(f)i
def.
=

P
j⇠i fi,j , r def.

= �div>

Flow on edge: fj,i = �fi,j . i
fi,j > 0 fi,j 0 < 0
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Parametric Surfaces

4

Parameterized surface: u ⇥ R2 ⇤� �(u) ⇥M.
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Parametric Surfaces
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Parameterized surface: u ⇥ R2 ⇤� �(u) ⇥M.

Curve in parameter domain: t ⇥ [0, 1] ⇤� �(t) ⇥ D.
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Parametric Surfaces

4

Parameterized surface: u ⇥ R2 ⇤� �(u) ⇥M.

Curve in parameter domain: t ⇥ [0, 1] ⇤� �(t) ⇥ D.

Geometric realization: �̄(t) def.= ⇥(�(t)) �M.
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Parametric Surfaces

4

Parameterized surface: u ⇥ R2 ⇤� �(u) ⇥M.

Curve in parameter domain: t ⇥ [0, 1] ⇤� �(t) ⇥ D.

Geometric realization: �̄(t) def.= ⇥(�(t)) �M.

For an embedded manifoldM � Rn:
First fundamental form: I� =

�
� ⇥�

⇥ui
,

⇥�

⇥uj
⇥
⇥

i,j=1,2

.
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L(�) def.=
� 1

0
||�̄�(t)||dt =

� 1

0

⇥
��(t)I�(t)��(t)dt.
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Riemannian Manifold
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Length of a curve �(t) �M: L(�) def.=
� 1

0

⇥
��(t)TH(�(t))��(t)dt.

Riemannian manifold: M � Rn (locally)
Riemannian metric: H(x) � Rn�n, symmetric, positive definite.



Riemannian Manifold
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Length of a curve �(t) �M: L(�) def.=
� 1

0

⇥
��(t)TH(�(t))��(t)dt.

W (x)

Euclidean space: M = Rn, H(x) = Idn.

Riemannian manifold: M � Rn (locally)
Riemannian metric: H(x) � Rn�n, symmetric, positive definite.
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Length of a curve �(t) �M: L(�) def.=
� 1

0

⇥
��(t)TH(�(t))��(t)dt.

W (x)

Euclidean space: M = Rn, H(x) = Idn.
2-D shape: M � R2, H(x) = Id2.

Parametric surface: H(x) = Ix (1st fundamental form).
Image processing: image I, W (x)2 = (� + ||�I(x)||)�1.

DTI imaging: M = [0, 1]3, H(x)=di�usion tensor.

Riemannian manifold: M � Rn (locally)
Riemannian metric: H(x) � Rn�n, symmetric, positive definite.

Isotropic metric: H(x) = W (x)2Idn.



Geodesic Distances
Geodesic distance metric overM � Rn

Geodesic curve: �(t) such that L(�) = dM(x, y).

Distance map to a starting point x0 �M: Ux0(x) def.= dM(x0, x).

dM(x, y) = min
�(0)=x,�(1)=y

L(�)
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What’s Next?
Laurent Cohen: Dijkstra and Fast Marching algorithms.

Jean-Marie Mirebeau: anisotropy and adaptive stencils.
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Figure 4: The unit sphere {u ∈ IR2; ∥u∥M = 1}, an M -reduced basis (u, v), and the boundary
of the FM-LBR mesh T (M), for some M ∈ S+

2 of anisotropy ratio κ(M) ranging from 1 to 15,
and eigenvector (cos(3π/8), sin(3π/8)) associated to the small eigenvalue.

a robust minimal path extraction method for the FM-LBR and other Dijkstra inspired solvers
of the eikonal equation. A heuristic analysis of the FM-LBR accuracy, and a last numerical
experiment, appear in Appendix B.

Remark 1.10 (Memory requirements). The memory requirements of numerical methods for the
eikonal equation, such as the AGSI, the OUM and the FM-LBR, are dominated by (I) storing
the discrete solution d and the Riemannian metric M, sampled on the discrete domain Ω ∩ Z,
and (II) storing the graph structure underlying the numerical scheme. Point (I) requires two
tables of N and Nm(m + 1)/2 reals, which may be represented in 32 bit (single precision) or
64 bit (double precision) format. The storage cost for the metric can be avoided if it has an
analytical expression.

Point (II) can be avoided for the AGSI and the OUM when these methods are executed
on a mesh with a trivial periodic structure, which is the case in our experiments. For the
FM-LBR, Point (II) amounts to storing the non-empty reverse stencils V [y], at all points of
Y := {y ∈ Z; V [y] ̸= ∅}, since the direct ones can be recomputed individually on demand for a
minor cost. The set Y the union of Ω ∩ Z and of a thin boundary layer (in our experiments,
Y = Ω ∩ Z due to the use of outflow boundary conditions). The chosen data structure uses two
tables: one of vectors (the differences x−y, for x ∈ V [y], y ∈ Y , enumerated consecutively), and
one of #(Y ) ≈ N integers (the start, for each y ∈ Y , of the description of V [y] in the previous
table). We represent integers in 32bit format, and vector components in 8bit format, since these
are small integers by construction.

Summing up, we find that the memory requirements of the FM-LBR are larger than those
of the AGSI or the OUM (on a grid), by a factor ranging from 2 (metric and solution stored in
double precision), to 9 (analytical metric, solution stored in single precision), through 3 (metric
and solution stored in single precision), in two dimensions. Respectively, in three dimensions,
from 2.6 to 24, through 4.3.

2 Analysis of the FM-LBR

We introduce in §2.1 the concepts of Lattice Basis Reduction. They are used in §2.2 to estimate
the construction cost of the FM-LBR meshes T (M), and to prove their admissibility in the
sense of Definition 1.7, as announced in Proposition 1.8. We finally prove in §2.3 the announced
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Figure 10: Results of the FM-LBR in the fourth, 3D, test case. Iso-surface {d(z) = 2} (left),
and shortest path joining the points (0, 0, 0) and (3, 0, 0) (center). Detail of the discrete points
(represented by small cubes), in the neighborhood of the curve Γ(t) = (cosω0t, sinω0t, t), for
which the Riemannian metric is not euclidean (right).

0.2−2, the former associated to the eigenvector (1, (π/2) cos(4πx)). Domain [0.5, 0.5]2,
discretized on a 193× 193 grid.

3. (Tubular segmentation [4], κ(M) = 100) Define the curve Γ(t) = t(cosω0t, sinω0t), t ∈
[0, 1]. Set M(z) = Id, except if there exists 0 ≤ t ≤ 1 and 0 ≤ r ≤ r0 such that
z = Γ(t) + r(cosω0t, sinω0t). In that case M(z) has the eigenvalues δ20 and 1, the former
with eigenvector Γ′(t). Parameters: ω0 := 6π, r0 := δ0 := 0.01. Domain: [−1, 1]2, grid
sizes n× n with 120 ≤ n ≤ 1200.

4. (Tubular segmentation, κ(M) = 50, 3D) Define the curve Γ(t) = (cosω0t, sinω0t, t), with
ω0 := (5/2)π. Set M(z) = Id, except if there exists t,λ, µ ∈ IR such that z = Γ(t) +
(λ cosω0t,λ sinω0t, µ) and λ2 + µ2 ≤ (r0/2)2. In that case M(z) has the eigenvalues δ20
and 1, the former with eigenvector Γ′(t) and the latter with multiplicity 2. Parameters:
ω0 := (5/2)π, δ0 = r0 = 0.02. Domain: [−1.1, 1.1]2 × [0, 3], grid size 200× 200× 272.

Conclusion

The FM-LBR, introduced in this paper, combines the Fast Marching algorithm with a concept
from discrete geometry named Lattice Basis Reduction. It has the following strongpoints. (I,
Convergence) The FM-LBR is consistent for the anisotropic eikonal equation associated to any
continuous Riemannian metric, of arbitrary anisotropy. (II, Complexity) It has a numerical
cost comparable to classical isotropic Fast Marching, independently of the problem anisotropy.
(III, Accuracy) The accuracy of the FM-LBR is competitive in general, and striking in test
cases, related to tubular segmentation in medical images, where the Riemannian metric has a
pronounced anisotropy close to and tangentially to a curve.

These qualities come at the price of the specialization of the FM-LBR: (i) the Riemannian
metric may not be replaced with a more general Finsler metric, see [16] for an adaptation to this
setting in 2D, (ii) the domain needs to be discretized on a cartesian grid, and (iii) of dimension 2
or 3. Hopefully these requirements are met in many applications, and future work will be devoted
to the application of the proposed algorithm in the context of medical image processing.
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