Geodesics and
 Fast Marching Methods

Gabriel Peyré

Laurent Cohen Jean-Marie Mirebeau

Geodesic computation on a graph

Geodesic computation on a graph

Graph: $(V, E), V=\{1, \ldots, n\}, E \subset V^{2}$ (symmetric).
Cost: $\left(w_{i, j}\right)_{(i, j) \in E}, w_{i, j}>0$.
Path: $\gamma=\left(\gamma_{1}, \ldots, \gamma_{K}\right),\left(\gamma_{k}, \gamma_{k+1}\right) \in E$.
Length: $L(\gamma) \stackrel{\text { def. }}{=} \sum_{k=1}^{K-1} w_{\gamma_{k}, \gamma_{k+1}}$.

Geodesic distance:

$$
d(x, y)=\min _{\gamma_{1}=x, \gamma_{K}=y} L(\gamma) .
$$

Geodesic computation on a graph

Graph: $(V, E), V=\{1, \ldots, n\}, E \subset V^{2}$ (symmetric).
Cost: $\left(w_{i, j}\right)_{(i, j) \in E}, w_{i, j}>0$.

Path: $\gamma=\left(\gamma_{1}, \ldots, \gamma_{K}\right),\left(\gamma_{k}, \gamma_{k+1}\right) \in E$.
Length: $L(\gamma) \stackrel{\text { def. }}{=} \sum_{k=1}^{K-1} w_{\gamma_{k}, \gamma_{k+1}}$.

Geodesic distance:

$$
d(x, y)=\min _{\gamma_{1}=x, \gamma_{K}=y} L(\gamma) .
$$

Difficulty: metrication error.

Connections with Maxflow Problems

Flow on edge: $f_{j, i}=-f_{i, j}$.

$$
\operatorname{div}(f)_{i} \stackrel{\text { def. }}{=} \sum_{j \sim i} f_{i, j}, \quad \nabla \stackrel{\text { def. }}{=}-\operatorname{div}^{\top}
$$

Connections with Maxflow Problems

$$
\begin{aligned}
& \text { Flow on edge: } f_{j, i}=-f_{i, j} . \\
& \operatorname{div}(f)_{i} \stackrel{\text { def. }}{=} \sum_{j \sim i} f_{i, j}, \quad \nabla \stackrel{\text { def. }}{=}-\operatorname{div}^{\top} \\
& d(x, y)=\min _{f \in \mathbb{R}^{E}}\left\{\sum_{(i, j) \in E} w_{i, j}\left|f_{i, j}\right| ; \operatorname{div}(f)=\delta_{x}-\delta_{y}\right\} \\
& \rightarrow \text { recast as max-flow. }
\end{aligned}
$$

$$
\begin{gathered}
f_{i, j} \neq 0 \\
\bullet
\end{gathered}
$$

Connections with Maxflow Problems

Flow on edge: $f_{j, i}=-f_{i, j}$.

$$
\begin{aligned}
& \operatorname{div}(f)_{i} \stackrel{\text { def. }}{=} \sum_{j \sim i} f_{i, j}, \quad \nabla \stackrel{\text { def. }}{=}-\operatorname{div}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
d(x, y)=\min _{f \in \mathbb{R}^{E}} & \left\{\sum_{(i, j) \in E} w_{i, j}\left|f_{i, j}\right| ; \operatorname{div}(f)=\delta_{x}-\delta_{y}\right\} \\
& \rightarrow \text { recast as max-flow. }
\end{aligned}
$$

$$
\begin{aligned}
=\max _{u \in \mathbb{R}^{N}} & \left\{u_{y} ;\left|(\nabla u)_{i, j}\right| \leqslant w_{i, j}, u_{x}=0\right\} \\
& \rightarrow \text { recast as min-cut. }
\end{aligned}
$$

Parametric Surfaces

Parameterized surface: $u \in \mathbb{R}^{2} \mapsto \varphi(u) \in \mathcal{M}$.

Parametric Surfaces

Parameterized surface: $u \in \mathbb{R}^{2} \mapsto \varphi(u) \in \mathcal{M}$.

Curve in parameter domain: $t \in[0,1] \mapsto \gamma(t) \in \mathcal{D}$.

Parametric Surfaces

Parameterized surface: $u \in \mathbb{R}^{2} \mapsto \varphi(u) \in \mathcal{M}$.

Curve in parameter domain: $t \in[0,1] \mapsto \gamma(t) \in \mathcal{D}$.
Geometric realization: $\bar{\gamma}(t) \stackrel{\text { def. }}{=} \varphi(\gamma(t)) \in \mathcal{M}$.

Parametric Surfaces

Parameterized surface: $u \in \mathbb{R}^{2} \mapsto \varphi(u) \in \mathcal{M}$.

Curve in parameter domain: $t \in[0,1] \mapsto \gamma(t) \in \mathcal{D}$.
Geometric realization: $\bar{\gamma}(t) \stackrel{\text { def. }}{=} \varphi(\gamma(t)) \in \mathcal{M}$.
For an embedded manifold $\mathcal{M} \subset \mathbb{R}^{n}$:
First fundamental form: $I_{\varphi}=\left(\left\langle\frac{\partial \varphi}{\partial u_{i}}, \frac{\partial \varphi}{\partial u_{j}}\right\rangle\right)_{i, j=1,2}$.
Length of a curve

$$
L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1}\left\|\bar{\gamma}^{\prime}(t)\right\| \mathrm{d} t=\int_{0}^{1} \sqrt{\gamma^{\prime}(t) I_{\gamma(t)} \gamma^{\prime}(t)} \mathrm{d} t
$$

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite.
Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite. Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.

Euclidean space: $\mathcal{M}=\mathbb{R}^{n}, H(x)=\operatorname{Id}_{n}$.

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite.
Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.
Euclidean space: $\mathcal{M}=\mathbb{R}^{n}, H(x)=\operatorname{Id}_{n}$. 2-D shape: $\mathcal{M} \subset \mathbb{R}^{2}, H(x)=\operatorname{Id}_{2}$.

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite.
Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.
Euclidean space: $\mathcal{M}=\mathbb{R}^{n}, H(x)=\operatorname{Id}_{n}$.
2-D shape: $\mathcal{M} \subset \mathbb{R}^{2}, H(x)=\mathrm{Id}_{2}$.
Isotropic metric: $H(x)=W(x)^{2} \operatorname{Id}_{n}$.

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite.
Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.
Euclidean space: $\mathcal{M}=\mathbb{R}^{n}, H(x)=\operatorname{Id}_{n}$.
2-D shape: $\mathcal{M} \subset \mathbb{R}^{2}, H(x)=\operatorname{Id}_{2}$.
Isotropic metric: $H(x)=W(x)^{2} \operatorname{Id}_{n}$.
Image processing: image $I, W(x)^{2}=(\varepsilon+\|\nabla I(x)\|)^{-1}$.

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite.
Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.
Euclidean space: $\mathcal{M}=\mathbb{R}^{n}, H(x)=\operatorname{Id}_{n}$.
2-D shape: $\mathcal{M} \subset \mathbb{R}^{2}, H(x)=\operatorname{Id}_{2}$.
Isotropic metric: $H(x)=W(x)^{2} \operatorname{Id}_{n}$.
Image processing: image $I, W(x)^{2}=(\varepsilon+\|\nabla I(x)\|)^{-1}$.
Parametric surface: $H(x)=I_{x}$ ($1^{\text {st }}$ fundamental form).

Riemannian Manifold

Riemannian manifold: $\mathcal{M} \subset \mathbb{R}^{n}$ (locally)
Riemannian metric: $H(x) \in \mathbb{R}^{n \times n}$, symmetric, positive definite.
Length of a curve $\gamma(t) \in \mathcal{M}: L(\gamma) \stackrel{\text { def. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t$.
Euclidean space: $\mathcal{M}=\mathbb{R}^{n}, H(x)=\operatorname{Id}_{n}$.
2-D shape: $\mathcal{M} \subset \mathbb{R}^{2}, H(x)=\operatorname{Id}_{2}$.
Isotropic metric: $H(x)=W(x)^{2} \operatorname{Id}_{n}$.
Image processing: image $I, W(x)^{2}=(\varepsilon+\|\nabla I(x)\|)^{-1}$.
Parametric surface: $H(x)=I_{x}$ ($1^{\text {st }}$ fundamental form).
DTI imaging: $\mathcal{M}=[0,1]^{3}, H(x)=$ diffusion tensor.

Geodesic Distances

Geodesic distance metric over $\mathcal{M} \subset \mathbb{R}^{n}$

$$
d_{\mathcal{M}}(x, y)=\min _{\gamma(0)=x, \gamma(1)=y} L(\gamma)
$$

Geodesic curve: $\gamma(t)$ such that $L(\gamma)=d_{\mathcal{M}}(x, y)$.
Distance map to a starting point $x_{0} \in \mathcal{M}: U_{x_{0}}(x) \stackrel{\text { def. }}{=} d_{\mathcal{M}}\left(x_{0}, x\right)$.

What's Next?

Laurent Cohen: Dijkstra and Fast Marching algorithms.

Jean-Marie Mirebeau: anisotropy and adaptive stencils.

