Digital Geometry Processing

Pierre Alliez
Inria Sophia Antipolis

x-ray diffractometer
Geometry
$\gamma \varepsilon \omega \mu \varepsilon \tau \rho i \alpha$

geo $=$ earth metria $=$ measure

radio telescope

laser scanner

Digital Geometry

- Entertainment Industry

- Modeling \rightarrow digital character \& set design
- Simulation \rightarrow computer games, movies, special effects

Digital Geometry

- Medical Applications

MRI scanner

2D slices

- Analysis \rightarrow diagnosis, operation planning
- Modeling \rightarrow design of prosthetics
- Simulation \rightarrow surgery training

Digital Geometry

- Engineering Applications

- Analysis \rightarrow quality control
- Modeling \rightarrow product design, rapid prototyping
- Simulation \rightarrow aerodynamics, crash tests

Digital Geometry

- 3D City Modeling

range-data, images, etc.

3D city model

- Analysis \rightarrow navigation, map design
- Modeling \rightarrow urban planning, virtual worlds
- Simulation \rightarrow traffic, pollution, etc.

Application Areas

- Computer games
- Movie production
- Engineering
- Cultural Heritage
- Topography
- Architecture
- Medicine
- etc.

Geometry Processing Pipeline

Geometry Processing Pipeline

Geometry Processing Pipeline

Surface smoothing for noise removal

Geometry Processing Pipeline

Surface smoothing for noise removal

\downarrow

Geometry Processing Pipeline

Geometry Processing Pipeline

Simplification for complexity reduction

Remeshing for improving mesh quality

Geometry Processing Pipeline

Freeform and multiresolution modeling

Geometry Processing Toolbox

- Geometric Modeling
- Methods \& algorithms for representing and processing geometric objects
- Geometry processing
- Core algorithms?
- Efficient implementations?

Shape Reconstruction

Pierre Alliez
Inria

Ínia

Outline

- Sensors
- Problem statement
- Computational Geometry
- Voronoi/Delaunay
- Alpha-shapes
- Crust
- Variational formulations
- Poisson reconstruction

Invia

SENSORS

Laser scanning

invia

Car-based Laser

Airborne Lidar

Cnzía

Multi-View Stereo (MVS)

Invia

Depth Sensors

Invia

PROBLEM STATEMENT

Indian

Reconstruction Problem

Input: point set P sampled over a surface S :

Non-uniform sampling
With holes
With uncertainty (noise)

point set

Output: surface
Approximation of S in terms of topology and geometry

Desired:
Watertight
Intersection free

reconstruction

surface

Ill-posed Problem

Many candidate surfaces for the reconstruction problem!

III-posed Problem

Many candidate surfaces for the reconstruction problem! How to pick?

Priors

Smooth

Piecewise Smooth

"Simple"

Surface Smoothness Priors

Global: linear, eigen, graph cut, ...
Robustness to missing data

Piecewise Smoothness

Sharp near features
Smooth away from features

Domain-Specific Priors

Previous Work

 Computers.and Graphics, 11:393\{408\}, 1987,

Warm-up

Smooth

Piecewise Smooth

"Simple"
invia

VORONOI / DELAUNAY

Inciar

Voronoi Diagram

Let $\mathcal{E}=\left\{\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}$ be a set of points (so-called sites) in \mathbb{R}^{d}. We associate to each site $\mathbf{p}_{\mathbf{i}}$ its Voronoi region $V\left(\mathbf{p}_{\mathbf{i}}\right)$ such that:

$$
V\left(\mathbf{p}_{\mathbf{i}}\right)=\left\{\mathbf{x} \in \mathbb{R}^{d}:\left\|\mathbf{x}-\mathbf{p}_{\mathbf{i}}\right\| \leq\left\|\mathbf{x}-\mathbf{p}_{\mathbf{j}}\right\|, \forall j \leq n\right\} .
$$

http://www.cgal.org

Delaunay Triangulation

Dual structure of the Voronoi diagram.

The Delaunay triangulation of a set of sites E is a simplicial complex such that $k+1$ points in E form a Delaunay simplex if their Voronoi cells have nonempty intersection

Empty Circle Property

Empty circle: A triangulation T of a point set E such that any d-simplex of T has a circumsphere that does not enclose any point of E is a Delaunay triangulation of E . Conversely, any k-simplex with vertices in E that can be circumscribed by a hypersphere that does not enclose any point of E is a face of the Delaunay triangulation of E.

Delaunay-based

Key idea: assuming dense enough sampling, reconstructed triangles are Delaunay triangles.

Alpha-Shapes [Edelsbrunner, Kirkpatrick, Seidel]

Segments: point pairs that can be touched by an empty disc of radius alpha.

Alpha-Shapes

In 2D: family of piecewise linear simple curves constructed from a point set P.

Subcomplex of the Delaunay triangulation of P.
Generalization of the concept of the convex hull.

Alpha-Shapes

$\alpha=0 \quad$ Alpha controls the desired level of detail.

$\alpha=\infty$

Delaunay-based

Key idea: assuming dense enough sampling, reconstructed triangles are Delaunay triangles.

First define
Medial axis
Local feature size
Epsilon-sampling

MEDIAL AXIS

Ennis

Medial Axis

For a shape (curve/surface) a Medial Ball is a circle/sphere that only meets the shape tangentially, in at least two points.

Medial Axis

For a shape (curve/surface) a Medial Ball is a circle/sphere that only meets the shape tangentially, in at least two points.
The centers of all such balls make up the medial axis/skeleton.

Medial Axis

Incian

Medial Axis

Inria

Medial Axis

Invia

Medial Axis

Observation*:

For a reasonable point sample, the medial axis is wellsampled by the Voronoi vertices.
*In 3D, this is only true for a subset of the Voronoi vertices - the poles.

Voronoi \& Medial Axis

Enian

Local Feature Size

Indian

Epsilon-Sampling

Inciar

Crust [Amenta et al. 98]

If we consider the Delaunay Triangulation of a point set, the shape boundary can be described as a subset of the Delaunay edges.

Q: How do we determine which edges to keep?
A: Two types of edges:

1. Those connecting adjacent points on the boundary
2. Those traversing the shape.

Discard those that traverse.

Crust [Amenta et al. 98]

Observation:

Edges that traverse cross the medial axis.
Although we don't know the axis, we can sample it with the Voronoi vertices.

Edges that traverse must be near the Voronoi vertices.

Crust [Amenta et al. 98]

Incian

Delaunay Triangulation

Inria

Delaunay Triangulation \& Voronoi Diagram

Iniar

Voronoi Vertices

invia

Refined Delaunay Triangulation

Inria

Crust

Crust

Incian

Crust (variant)

Algorithm:

1. Compute the Delaunay triangulation.
2. Compute the Voronoi vertices
3. Keep all edges for which there is a circle that contains the edge but no Voronoi vertices.

SPECTRAL «CRUST »

Incian

Space Partitioning

Given a set of points, construct the Delaunay triangulation.

If we label each triangle as inside/outside, then the surface of interest is the set of edges that lie between inside and outside triangles.

Space Partitioning

Q: How to assign labels?
A: Spectral Partitioning
Assign a weight to each edge indicating if the two triangles are likely to have the same label.

Space Partitioning

Assigning edge weights

Q: When are triangles on opposite sides of an edge likely to have the same label?

A: If the triangles are on the same side, their circumscribing circles intersect deeply.
Use the angle of intersection to set the weight.

Crust

Several Delaunay algorithms provably correct

Delaunay-based

Several Delaunay algorithms are provably correct... in the absence of noise and undersampling.
perfect data?

Noise \& Undersampling

Invia

Delaunay-based

Several Delaunay algorithms are provably correct... in the absence of noise and undersampling.

Motivates reconstruction by fitting approximating implicit surfaces

VARIATIONAL FORMULATIONS

Smooth

Piecewise Smooth

"Simple"

Poisson Surface Reconstruction

[Kazhdan et al. 06]

Indicator Function

Construct indicator function from point samples

Inria

Indicator Function

Construct indicator function from point samples

Poisson Surface Reconstruction

Mana

Poisson Surface Reconstruction

WHAT NEXT

CAria

What Next

Online

- Reconstruction
- Localization

Robustness

- Structured outliers
- Heterogeneous data

«La Lune»

Invia

« La Lune »

invia

Simplification \& Approximation

Pierre Alliez
Inria Sophia Antipolis

Outline

- Motivations
- Simplification
- Approximation
- Remaining Challenges

Motivations

- Multi-resolution hierarchies for
- efficient geometry processing
- level-of-detail (LOD) rendering

Complexity-Error Tradeoff

Problem Statement

- Given: $\mathcal{M}=(\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{F}^{\prime}\right)$ such that

1. $\left|\mathcal{V}^{\prime}\right|=n<|\mathcal{V}|$ and $\left\|\mathcal{M}-\mathcal{M}^{\prime}\right\|$ is minimal, or
2. $\left\|\mathcal{M}-\mathcal{M}^{\prime}\right\|<\epsilon$ and $\left|\mathcal{V}^{\prime}\right|$ is minimal

Problem Statement

- Given: $\mathcal{M}=(\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{F}^{\prime}\right)$ such that

1. $\left|\mathcal{V}^{\prime}\right|=n<|\mathcal{V}|$ and $\left\|\mathcal{M}-\mathcal{M}^{\prime}\right\|$ is minimal, or
2. $\left\|\mathcal{M}-\mathcal{M}^{\prime}\right\|<\epsilon$ and $\left|\mathcal{V}^{\prime}\right|$ is minimal
hard! [Agarwal-Suri 1998]
\rightarrow look for sub-optimal solution

Simplification

Simplification

- Vertex Clustering
- Iterative Decimation
- Extensions

Simplification

- Vertex Clustering
- Iterative Decimation
- Extensions

Vertex Clustering

- Cluster Generation
- Uniform 3D grid
- Map vertices to cluster cells
- Computing a representative
- Mesh generation

- Topology changes

Vertex Clustering

- Cluster Generation
- Hierarchical approach
- Top-down or bottom-up
- Computing a representative
- Mesh generation
- Topology changes

Vertex Clustering

- Cluster Generation
- Computing a representative
- Average/median vertex position
- Error quadrics
- Mesh generation
- Topology changes

Computing a Representative

- Average vertex position \rightarrow Low-pass filter

Computing a Representative

- Median vertex position \rightarrow Sub-sampling

Computing a Representative

- Error quadrics

Error Quadrics

- Squared distance to plane

$$
\begin{gathered}
p=(x, y, z, 1)^{T}, \quad q=(a, b, c, d)^{T} \\
\operatorname{dist}(q, p)^{2}=\left(q^{T} p\right)^{2} \\
Q_{q}=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
a b & b^{2} & b c & b d \\
a c & b c & b^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
\end{gathered}
$$

Error Quadrics

- Sum distances to vertex' planes
$\sum_{i} \operatorname{dist}(q, p)^{2}$
- Point location that minimizes the error

$$
\left[\begin{array}{cccc}
q_{11} & q_{12} & q_{13} & q_{14} \\
q_{21} & q_{22} & q_{23} & q_{24} \\
q_{31} & q_{32} & q_{33} & q_{34} \\
0 & 0 & 0 & 1
\end{array}\right] p^{*}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Vertex Clustering

- Cluster Generation
- Computing a representative
- Mesh generation
- Clusters $p\left\{p_{0}, \ldots, p_{n}\right\}, q\left\{q_{0}, \ldots, q_{m}\right\}$
- Connect (p, q) if there was an edge (p_{i}, q_{j})
- Topology changes

Vertex Clustering

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes
- If different sheets pass through one cell
- Not manifold

Simplification

- Vertex Clustering
- Iterative Decimation
- Extensions

Iterative Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

General Setup

Repeat:

- pick mesh region
- apply decimation operator

Until no further reduction possible

Greedy Optimization

For each region

- evaluate quality after decimation
- enqueue(quality, region)

Repeat:

- pick best mesh region
- apply decimation operator
- update queue

Until no further reduction possible

Iterative Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Decimation Operators

- What is a "region" ?
- What are the DOF for re-triangulation?
- Classification
- Topology-changing vs. topology-preserving
- Subsampling vs. filtering

Vertex Removal

Select a vertex to be eliminated

Vertex Removal

Select all triangles
sharing this vertex

Vertex Removal

Remove the selected triangles, creating the hole

Vertex Removal

Fill the hole with triangles

Decimation Operators

- Remove vertex
- Re-triangulate hole
- Combinatorial DOFs
- Sub-sampling

Decimation Operators

- Merge two adjacent triangles
- Define new vertex position
- Continuous DOF
- Filtering

Decimation Operators

- Collapse edge into one end point
- Special vertex removal
- Special edge collapse
- No DOFs
- One operator per half-edge
- Sub-sampling

Edge Collapse

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Local Error Metrics

- Local distance to mesh [schroeder et al. 92]
- Compute average plane
- No comparison to original geometry

Local Error Metrics

- Volume preserving [Lindstrom-Turk]. Fast and memory efficient polygonal simplification. IEEE Visualization 98.

Implemented in

Global Error Metrics

- Simplification envelopes [Cohen et al. 96]
- Compute (non-intersecting) offset surfaces
- Simplification guarantees to stay within bounds

Global Error Metrics

- (Two-sided) Hausdorff distance: Maximum distance between two shapes
- In general $d(A, B) \neq d(B, A)$
- Compute-intensive

Valette et al. Mesh Simplification using a

Global Error Metrics

- One-sided Hausdorff distance
- From original vertices to current surface

Global Error Metrics

- Error quadrics [Garland, Heckbert 97]
- Squared distance to planes at vertex
- No bound on true error

Error Quadrics

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Fairness Criteria

- Rate quality of decimation operation
- Approximation error
- Triangle shape
- Dihedral angles
- Valence balance
- Color differences

Fairness Criteria

- Rate quality after decimation
- Approximation error
- Triangle shape
- Dihedral angles
- Valance balance
- Color differences

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Topology Changes

- Merge vertices across non-edges
- Changes mesh topology
- Need spatial neighborhood information
- Generates non-manifold meshes

Topology Changes

- Merge vertices across non-edges
- Changes mesh topology
- Need spatial neighborhood information
- Generates non-manifold meshes

manifold

non-manifold

Approximation

Variational Shape Approximation

- Rationale: cast surface approximation as a variational k-partitioning problem

Cohen-Steiner, A., Desbrun.
Variational Shape Approximation. SIGGRAPH 2004.

Simpler Setting: 2D Partitioning

Energy

$$
E=\sum_{j=1 . . k} \int_{x \in R_{j}} \rho(x)\left\|x-x_{j}\right\|^{2} d x
$$

density function

Lloyd Iteration

- Alternate:
- Voronoi partitioning
- Relocate sites to centroids
- Minimizes energy
- Necessary condition for optimality: Centroidal Voronoi
 tessellation

Variational Shape Approximation

- Rationale: cast surface approximation as a variational k-partitioning problem
- for each region, find best-fit linear proxy
- "best fit" for a given metric

Variational Shape Approximation

- Distortion
= integrated error between region and proxy
- Total distortion = sum of proxy distortion
- Best k-approximation = minimum distortion

Overview

initial mesh

+ partition

associated proxies

proxy-based remeshing

K-Means Clustering

Starting with k-generators

Alternate:

- cluster by closest proximity (creates regions R_{j})
- find new generators c_{j} of regions R_{j}

Partition Optimization

Clustering for Approximation

- Replace points by proxies
- Min approximation error
- Equi-distribute energy among proxies

Error Metrics

- L^{2}
- asymptotically, aspect ratio is $\sqrt{\kappa_{1} / \kappa_{2}}$
- hyperbolic regions troublesome
- no unique minimum
- convergence in L^{2} does not guarantee in normals
- example: Schwarz's Chinese lantern
- [Shewchuck 04] gradient bounds harder than interpolation
- $\mathrm{L}^{2,1} \iint_{x \in X}\left\|\mathbf{n}(x)-\mathbf{n}_{i}\right\|^{2} d x$
- asymptotically, aspect ratio is κ_{1} / κ_{2}
- hyperbolic regions ok
- captures normal field
L^{2} VS. $L^{2,1}$

Triangulation

- node vertex
- where 3+ regions meet
- 2+ on boundary

Triangulation

- node wedge

Triangulation

- Two-pass flooding algorithm (~multi-source Djisktra's shortest path algorithm)
- first pass: flood only region boundaries (to enforce the constrained edges)
- second pass: flood interior areas

First pass

Second pass

Triangulation

Triangulation

Metrics

Example

Example

Example

Remaining Challenges

Remaining Challenges

- Beyond approximation
- Abstraction [Sheffer, Mitra et al. 2009] Abstraction of Man-Made Shapes.

Remaining Challenges

- Beyond approximation
- Meaningful LODs. [Verdié, Lafarge, A. 2013]

