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Digital Geometry

• Entertainment Industry

• Modeling ➙ digital character & set design

• Simulation ➙ computer games, movies, 
special effects



Digital Geometry

• Medical Applications

• Analysis ➙ diagnosis, operation planning

• Modeling ➙ design of prosthetics

• Simulation ➙ surgery training



Digital Geometry

• Engineering Applications

• Analysis ➙ quality control

• Modeling ➙ product design, rapid 
prototyping

• Simulation ➙ aerodynamics, crash tests



Digital Geometry

• 3D City Modeling

• Analysis ➙ navigation, map design

• Modeling ➙ urban planning, virtual worlds

• Simulation ➙ traffic, pollution, etc.



Application Areas

• Computer games

• Movie production

• Engineering

• Cultural Heritage

• Topography

• Architecture

• Medicine

• etc.



Geometry Processing Pipeline



Geometry Processing Pipeline
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Geometry Processing Pipeline



Geometry Processing Toolbox

• Geometric Modeling

– Methods & algorithms for representing and 
processing geometric objects

• Geometry processing

– Core algorithms?

– Efficient implementations?
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Outline

• Sensors

• Problem statement

• Computational Geometry

• Voronoi/Delaunay

• Alpha-shapes

• Crust

• Variational formulations

• Poisson reconstruction



SENSORS



Laser scanning



Car-based Laser
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Airborne Lidar



Multi-View Stereo (MVS)

markt.mp4
markt.mp4


Depth Sensors



PROBLEM STATEMENT



Reconstruction Problem

Input: point set P sampled over 
a surface S:

Non-uniform sampling

With holes

With uncertainty (noise)

Output: surface

Approximation of S in terms of 
topology and geometry

Desired:

Watertight

Intersection free

point set surfacereconstruction



Ill-posed Problem

Many candidate surfaces for the 
reconstruction problem! 



Ill-posed Problem

Many candidate surfaces for the 
reconstruction problem! How to pick? 



Priors

Smooth Piecewise Smooth “Simple”



Surface Smoothness Priors

Local Smoothness Global Smoothness Piecewise Smoothness

Global: linear, eigen, graph 
cut, …
Robustness to missing data

Sharp near features
Smooth away from features 

Local fitting
No control away from data
Solution by interpolation
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Domain-Specific Priors

Surface Reconstruction 
by Point Set Structuring

[Lafarge - A. EUROGRAPHICS 2013] [Verdie, Lafarge - A. ACM Transactions on Graphics 2015]

LOD Reconstruction 
for Urban Scenes
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Warm-up
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VORONOI / DELAUNAY



Voronoi Diagram

http://www.cgal.org

voronoi.exe
voronoi.exe


Delaunay Triangulation

Dual structure of the Voronoi diagram. 

The Delaunay triangulation of a set of sites E is a simplicial 
complex such that k+1 points in E form a Delaunay simplex if 
their Voronoi cells have nonempty intersection

voronoi.exe
voronoi.exe


Empty Circle Property

Empty circle: A triangulation T of a point set E such that any d-simplex of T has 
a circumsphere that does not enclose any point of E is a Delaunay 
triangulation of E. Conversely, any k-simplex with vertices in E that can be
circumscribed by a hypersphere that does not enclose any point of E is a 
face of the Delaunay triangulation of E.

voronoi.exe
voronoi.exe


Delaunay-based

Key idea: assuming dense enough sampling, 
reconstructed triangles are Delaunay triangles.



Alpha-Shapes [Edelsbrunner, Kirkpatrick, Seidel]

Segments: point pairs that can be touched 
by an empty disc of radius alpha.



Alpha-Shapes

In 2D: family of piecewise linear simple curves 
constructed from a point set P. 

Subcomplex of the Delaunay triangulation of P.

Generalization of the concept of the convex hull.



Alpha-Shapes

Alpha controls the desired level of detail.



0 



Delaunay-based

Key idea: assuming dense enough sampling, 
reconstructed triangles are Delaunay triangles.

First define

Medial axis

Local feature size

Epsilon-sampling



MEDIAL AXIS



Medial Axis

For a shape (curve/surface) a Medial Ball is a 
circle/sphere that only meets the shape tangentially, in 
at least two points.

10



Medial Axis

For a shape (curve/surface) a Medial Ball is a 
circle/sphere that only meets the shape tangentially, in 
at least two points.

The centers of all such balls make
up the medial axis/skeleton.

10



Medial Axis



Medial Axis



Medial Axis



Medial Axis

Observation*:

For a reasonable point sample, the medial axis is well-
sampled by the Voronoi vertices.

*In 3D, this is only true for a subset of the Voronoi vertices – the poles.



Voronoi & Medial Axis



Local Feature Size



Epsilon-Sampling



Crust [Amenta et al. 98]

If we consider the Delaunay Triangulation of a point 
set, the shape boundary can be described as a subset 
of the Delaunay edges.

Q: How do we determine which edges to keep?

A: Two types of edges:

1. Those connecting adjacent
points on the boundary

2. Those traversing the shape.

Discard those that traverse.



Crust [Amenta et al. 98]

Observation:

Edges that traverse cross the medial axis.

Although we don’t know the axis, we can sample it 
with the Voronoi vertices.

Edges that traverse must 

be near the Voronoi vertices.



Crust [Amenta et al. 98]



Delaunay Triangulation



Delaunay Triangulation & Voronoi Diagram



Voronoi Vertices



Refined Delaunay Triangulation



Crust



Crust

voronoi.exe
voronoi.exe


Crust (variant)

Algorithm:

1. Compute the Delaunay triangulation.

2. Compute the Voronoi vertices

3. Keep all edges for which 

there is a circle that 

contains the edge but 

no Voronoi vertices.



SPECTRAL « CRUST »



Space Partitioning

Given a set of points, construct the Delaunay 
triangulation.

If we label each triangle as inside/outside, then the 
surface of interest is the set of edges that lie between 
inside and outside triangles.



Space Partitioning

Q: How to assign labels?

A: Spectral Partitioning

Assign a weight to each edge indicating if the two 
triangles are likely to have the same label.

[Kolluri et al., 2004]



Space Partitioning

Assigning edge weights

Q: When are triangles on opposite sides of an edge likely to 
have the same label?

A: If the triangles are on the same side, their circumscribing 
circles intersect deeply.

Use the angle of intersection
to set the weight.

Large Weight Small Weight

15



Crust

Several Delaunay algorithms provably correct



Delaunay-based

Several Delaunay algorithms are provably correct… in 
the absence of noise and  undersampling.

perfect data ?



Noise & Undersampling



Delaunay-based

Several Delaunay algorithms are provably correct… in 
the absence of noise and  undersampling.

Motivates reconstruction by fitting approximating
implicit surfaces



VARIATIONAL FORMULATIONS

Smooth Piecewise Smooth “Simple”



Poisson Surface Reconstruction

[Kazhdan et al. 06]



Indicator Function

1
0

1

1
1

1

0

0

Construct indicator function from point samples

???



Indicator Function

Construct indicator function from point samples

0
0

0

0
0

0

0

0

variational 
calculus

splatted normals

sparse linear system



Poisson Surface Reconstruction

voronoi.exe
voronoi.exe


Poisson Surface Reconstruction



WHAT NEXT



What Next

Online

• Reconstruction

• Localization

Robustness

• Structured outliers

• Heterogeneous data



« La Lune »



« La Lune »





Simplification & Approximation
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Outline

• Motivations

• Simplification

• Approximation

• Remaining Challenges
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Motivations

• Multi-resolution hierarchies for 

– efficient geometry processing

– level-of-detail (LOD) rendering
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Complexity-Error Tradeoff

error

complexity



87

Problem Statement

• Given:  

• Find:                      such that

1. and                       is minimal, or

2. and         is minimal
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Problem Statement

• Given:  

• Find:                      such that

1. and                       is minimal, or

2. and         is minimal

hard!

→ look for sub-optimal solution

[Agarwal-Suri 1998]



Simplification



Simplification

• Vertex Clustering

• Iterative Decimation

• Extensions



Simplification

• Vertex Clustering

• Iterative Decimation

• Extensions
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Vertex Clustering

• Cluster Generation

– Uniform 3D grid

– Map vertices to cluster cells

• Computing a representative

• Mesh generation

• Topology changes
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Vertex Clustering

• Cluster Generation

– Hierarchical approach

– Top-down or bottom-up

• Computing a representative

• Mesh generation

• Topology changes
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Vertex Clustering

• Cluster Generation

• Computing a representative

– Average/median vertex position

– Error quadrics

• Mesh generation

• Topology changes
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Computing a Representative

• Average vertex position → Low-pass filter
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Computing a Representative

• Median vertex position → Sub-sampling
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Computing a Representative

• Error quadrics
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Error Quadrics

• Squared distance to plane
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• Sum distances to vertex’ planes

• Point location that minimizes the error

Error Quadrics
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Vertex Clustering

• Cluster Generation

• Computing a representative

• Mesh generation

– Clusters  p{p0,...,pn},  q{q0,...,qm} 

– Connect (p,q) if there was an edge (pi,qj)

• Topology changes
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Vertex Clustering

• Cluster Generation

• Computing a 
representative

• Mesh generation

• Topology changes

– If different sheets pass 
through one cell

– Not manifold



Simplification

• Vertex Clustering

• Iterative Decimation

• Extensions
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Iterative Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

• Topology changes
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General Setup

Repeat:

– pick mesh region

– apply decimation operator

Until no further reduction possible
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Greedy Optimization

For each region

– evaluate quality after decimation

– enqueue(quality, region)

Repeat:

– pick best mesh region

– apply decimation operator

– update queue

Until no further reduction possible
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Iterative Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

• Topology changes
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Decimation Operators

• What is a "region" ?

• What are the DOF for re-triangulation?

• Classification

– Topology-changing vs. topology-preserving

– Subsampling vs. filtering
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Vertex Removal

Select a vertex to be 
eliminated
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Vertex Removal

Select all triangles 
sharing this vertex
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Vertex Removal

Remove the selected 
triangles, creating 
the hole
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Vertex Removal

Fill the hole with 
triangles
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Decimation Operators

• Remove vertex

• Re-triangulate hole

– Combinatorial DOFs

– Sub-sampling

Vertex Removal

Vertex Insertion
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Decimation Operators

• Merge two adjacent triangles

• Define new vertex position

– Continuous DOF

– Filtering

Vertex Split

Edge Collapse
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Decimation Operators

• Collapse edge into one end point

– Special vertex removal

– Special edge collapse

• No DOFs

– One operator per half-edge

– Sub-sampling

Restricted Vertex Split

Half-Edge Collapse
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Edge Collapse
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Edge Collapse 
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Edge Collapse
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Edge Collapse
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Edge Collapse



120

Edge Collapse
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Edge Collapse
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Edge Collapse
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Edge Collapse
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Edge Collapse
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Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

• Topology changes
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• Local distance to mesh [Schroeder et al. 92]

– Compute average plane

– No comparison to original geometry

Local Error Metrics



Local Error Metrics

• Volume preserving [Lindstrom-Turk]. Fast and 
memory efficient polygonal simplification. 
IEEE Visualization 98. 

Implemented in 
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• Simplification envelopes    [Cohen et al. 96]

– Compute (non-intersecting) offset surfaces

– Simplification guarantees to stay within bounds

Global Error Metrics
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• (Two-sided) Hausdorff distance: Maximum 
distance between two shapes

– In general d(A,B) ≠ d(B,A)

– Compute-intensive

Global Error Metrics

A

B

d(A,B)

d(B,A)

Valette et al. Mesh Simplification using a 

two-sided error minimization. 2012.
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Global Error Metrics

• One-sided Hausdorff distance

– From original vertices to current surface
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Global Error Metrics

• Error quadrics [Garland, Heckbert 97]

– Squared distance to planes at vertex

– No bound on true error

p1 p2

solve v3
TQ3v3 = min

Q3 = Q1+Q2

Q2

Q1

v3



Error Quadrics
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Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

• Topology changes
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• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– Color differences

– ...

Fairness Criteria
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Fairness Criteria

• Rate quality after decimation

– Approximation error

– Triangle shape

– Dihedral angles

– Valance balance

– Color differences

– ...
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Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

• Topology changes
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• Merge vertices across non-edges

– Changes mesh topology

– Need spatial neighborhood information

– Generates non-manifold meshes

Topology Changes

Vertex Contraction

Vertex Separation
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• Merge vertices across non-edges

– Changes mesh topology

– Need spatial neighborhood information

– Generates non-manifold meshes

Topology Changes

manifold non-manifold 



Approximation



Variational Shape Approximation

• Rationale: cast surface approximation as a 
variational k-partitioning problem

Cohen-Steiner, A., Desbrun. 
Variational Shape Approximation. 
SIGGRAPH 2004.



Simpler Setting: 2D Partitioning



Energy
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Lloyd Iteration

• Alternate:

– Voronoi partitioning

– Relocate sites to centroids

• Minimizes energy

– Necessary condition for 
optimality: Centroidal Voronoi 
tessellation

demo

demos/voronoi-thick.exe


Variational Shape Approximation

• Rationale: cast surface approximation as a 
variational k-partitioning problem

– for each region, find best-fit linear proxy

• “best fit” for a given metric

demo

demos/


Variational Shape Approximation

• Distortion 

= integrated error between region and proxy

• Total distortion = sum of proxy distortion

• Best k-approximation = minimum distortion



Overview

initial mesh

+ partition

associated 

proxies

proxy-based

remeshing



K-Means Clustering

Starting with k-generators

Alternate:

– cluster by closest proximity (creates regions Rj)

– find new generators cj of regions Rj



Partition Optimization

Clustering for Approximation

• Replace points by proxies

• Min approximation error

• Equi-distribute energy among proxies

demo

demos/fit_arg.exe cylinder.off
demos/fit_arg.exe cylinder.off
demos/


Error Metrics

• L2

– asymptotically, aspect ratio is

– hyperbolic regions troublesome
• no unique minimum

– convergence in L2 does not guarantee in normals
• example: Schwarz’s Chinese lantern

• [Shewchuck 04] gradient bounds harder than interpolation

• L2,1

– asymptotically, aspect ratio is

– hyperbolic regions ok

– captures normal field

21 

21 



L2 vs. L2,1



Triangulation

• node vertex

– where 3+ regions meet

– 2+ on boundary



Triangulation

• node wedge



Triangulation

• Two-pass flooding algorithm (~multi-source Djisktra's
shortest path algorithm)

• first pass: flood only region boundaries (to enforce 
the constrained edges)

• second pass: flood interior areas



First pass



Second pass



Triangulation

connect 3 source wedges



Triangulation



demo



Metrics

L2 L2,1



input 200 proxies

Example



Example



Example



400KT





5KP



5KP400KT



Remaining Challenges



Remaining Challenges

• Beyond approximation

– Abstraction [Sheffer, Mitra et al. 2009] Abstraction 
of Man-Made Shapes.



Remaining Challenges

• Beyond approximation

– Meaningful LODs. [Verdié, Lafarge, A. 2013]


