Mesh Processing Meets Graph Theory

Gabriel Peyré

www. numerical-tours.com

ÉCOLE NORMALE S U P ÉRIE URE

Triangulated Meshes

- Operators on Meshes
- Denoising by Diffusion
- Fourier on Meshes

Triangular Meshes

Triangulated mesh: topology $M=(V, E, F)$ and geometry $\mathcal{M}_{1}=(\mathcal{V}, \mathcal{E}, \mathcal{F})$.
Topology M :

- (0D) Vertices: $V \simeq\{1, \ldots, n\}$.
- (1D) Edges: $E \subset V \times V$.

Symmetric: $(i, j) \in E \Leftrightarrow i \sim j \Leftrightarrow(j, i) \in E$.

- (2D) Faces: $F \subset V \times V \times V$.

Compatibility: $(i, j, k) \in F \Leftarrow(i, j),(j, k),(k, i) \in E$.

$$
\forall(i, j) \in E, \quad \exists(i, j, k) \in F .
$$

Triangular Meshes

Triangulated mesh: topology $M=(V, E, F)$ and geometry $\mathcal{M}=(\mathcal{V}, \mathcal{E}, \mathcal{F})$.
Topology M:

- (0D) Vertices: $V \simeq\{1, \ldots, n\}$.
- (1D) Edges: $E \subset V \times V$.

Symmetric: $(i, j) \in E \Leftrightarrow i \sim j \Leftrightarrow(j, i) \in E$.

- (2D) Faces: $F \subset V \times V \times V$.

Compatibility: $(i, j, k) \in F \Leftarrow(i, j),(j, k),(k, i) \in E$.

$$
\forall(i, j) \in E, \quad \exists(i, j, k) \in F
$$

Geometric realization $\mathcal{M}: \quad \forall i \in V, x_{i} \in \mathbb{R}^{3}, \quad \mathcal{V} \stackrel{\text { def. }}{=}\left\{x_{i} \backslash i \in V\right\}$.

Piecewise linear mesh:

$$
\begin{aligned}
& \mathcal{E} \stackrel{\text { def. }}{=} \bigcup \operatorname{Conv}\left(x_{i}, x_{j}\right) \subset \mathbb{R}^{3} . \\
& \mathcal{F} \stackrel{\text { def. }}{=}{ }_{(i, j, j, k) \in F}^{(i, j \in E} \operatorname{Conv}\left(x_{i}, x_{j}, x_{k}\right) \subset \mathbb{R}^{3} .
\end{aligned}
$$

Local Connectivity

Vertex 1-ring: $V_{i} \stackrel{\text { def. }}{=}\{j \in V \backslash(i, j) \in E\} \subset V$.
Face 1-ring: $F_{i} \stackrel{\text { def. }}{=}\{(i, j, k) \in F \backslash i, j \in V\} \subset F$.

Local Connectivity

Vertex 1-ring: $V_{i} \stackrel{\text { def. }}{=}\{j \in V \backslash(i, j) \in E\} \subset V$.
Face 1-ring: $F_{i} \stackrel{\text { def. }}{=}\{(i, j, k) \in F \backslash i, j \in V\} \subset F$.

Normal Computation:

$$
\begin{aligned}
& \forall f=(i, j, k) \in F, \quad \overrightarrow{n_{f}} \xlongequal{\text { def. }} \frac{\left(x_{j}-x_{i}\right) \wedge\left(x_{k}-x_{i}\right)}{\left\|\left(x_{j}-x_{i}\right) \wedge\left(x_{k}-x_{i}\right)\right\|} . \\
& \forall i \in V, \quad \overrightarrow{n_{i}} \stackrel{\text { def. }}{=} \frac{\sum_{f \in F_{i}} \overrightarrow{n_{f}}}{\left\|\sum_{f \in F_{i}} \overrightarrow{n_{f}}\right\|}
\end{aligned}
$$

Mesh Displaying

Triangulated Meshes

- Operators on Meshes
- Denoising by Diffusion
- Fourier on Meshes

Functions on a Mesh

Function on a mesh: $f \in \ell^{2}(\mathcal{V}) \simeq \ell^{2}(V) \simeq \mathbb{R}^{n}$.
$f:\left\{\begin{array}{rlc}\mathcal{V} & \longrightarrow & \mathbb{R} \\ x_{i} & \longmapsto & f\left(x_{i}\right)\end{array} \Longleftrightarrow f:\left\{\begin{array}{rll}V & \longrightarrow & \mathbb{R} \\ i & \longmapsto & f_{i}\end{array} \Longleftrightarrow \Longleftrightarrow f=\left(f_{i}\right)_{i \in V} \in \mathbb{R}^{n}\right.\right.$.

Functions on a Mesh

Function on a mesh: $f \in \ell^{2}(\mathcal{V}) \simeq \ell^{2}(V) \simeq \mathbb{R}^{n}$.
$f:\left\{\begin{array}{rlc}\mathcal{V} & \longrightarrow & \mathbb{R} \\ x_{i} & \longmapsto & f\left(x_{i}\right)\end{array} \Longleftrightarrow f:\left\{\begin{array}{rll}V & \longrightarrow & \mathbb{R} \\ i & \longmapsto & f_{i}\end{array} \Longleftrightarrow f=\left(f_{i}\right)_{i \in V} \in \mathbb{R}^{n}\right.\right.$.
Inner product \& norm:

$$
\langle f, g\rangle \stackrel{\text { def. }}{=} \sum_{i \in V} f_{i} g_{i} \quad \text { and } \quad\|f\|^{2}=\langle f, f\rangle
$$

Functions on a Mesh

Function on a mesh: $f \in \ell^{2}(\mathcal{V}) \simeq \ell^{2}(V) \simeq \mathbb{R}^{n}$.
$f:\left\{\begin{array}{rlc}\mathcal{V} & \longrightarrow & \mathbb{R} \\ x_{i} & \longmapsto & f\left(x_{i}\right)\end{array} \Longleftrightarrow f:\left\{\begin{array}{rll}V & \longrightarrow & \mathbb{R} \\ i & \longmapsto & f_{i}\end{array} \Longleftrightarrow \Longleftrightarrow f=\left(f_{i}\right)_{i \in V} \in \mathbb{R}^{n}\right.\right.$.
Inner product \& norm:

$$
\langle f, g\rangle \stackrel{\text { def. }}{=} \sum_{i \in V} f_{i} g_{i} \quad \text { and } \quad\|f\|^{2}=\langle f, f\rangle
$$

Linear operator A :

$$
\begin{gathered}
A: \ell^{2}(V) \rightarrow \ell^{2}(V) \quad \Longleftrightarrow \quad A=\left(a_{i j}\right)_{i, j \in V} \in \mathbb{R}^{n \times n} \text { (matrix). } \\
(A f)\left(x_{i}\right)=\sum_{j \in V} a_{i j} f\left(x_{j}\right) \Longleftrightarrow \quad(A f)_{i}=\sum_{j \in V} a_{i j} f_{j} .
\end{gathered}
$$

Functions on a Mesh

Function on a mesh: $f \in \ell^{2}(\mathcal{V}) \simeq \ell^{2}(V) \simeq \mathbb{R}^{n}$.
$f:\left\{\begin{array}{rlc}\mathcal{V} & \longrightarrow & \mathbb{R} \\ x_{i} & \longmapsto & f\left(x_{i}\right)\end{array} \Longleftrightarrow f:\left\{\begin{array}{rll}V & \longrightarrow & \mathbb{R} \\ i & \longmapsto & f_{i}\end{array} \Longleftrightarrow \Longleftrightarrow f=\left(f_{i}\right)_{i \in V} \in \mathbb{R}^{n}\right.\right.$.
Inner product \& norm:

$$
\langle f, g\rangle \stackrel{\text { def. }}{=} \sum_{i \in V} f_{i} g_{i} \quad \text { and } \quad\|f\|^{2}=\langle f, f\rangle
$$

Linear operator A :

$$
\begin{array}{cl}
A: \ell^{2}(V) \rightarrow \ell^{2}(V) & \Longleftrightarrow \quad A=\left(a_{i j}\right)_{i, j \in V} \in \mathbb{R}^{n \times n} \text { (matrix). } \\
(A f)\left(x_{i}\right)=\sum_{j \in V} a_{i j} f\left(x_{j}\right) \Longleftrightarrow \quad(A f)_{i}=\sum_{j \in V} a_{i j} f_{j} .
\end{array}
$$

Mesh processing:

- Modify functions $f \in \ell^{2}(V) . \quad f \longrightarrow A f$
- Example: denoise a mesh \mathcal{M} as 3 functions on M.
- Strategy: apply a linear operator $f \mapsto A f$.
- Remark: A can computed from M only or from (M, \mathcal{M}).

Functions on Meshes

Examples:

- Coordinates: $x_{i}=\left(x_{i}^{1}, x_{i}^{2}, x_{i}^{3}\right) \in \mathbb{R}^{3}$.
- X-coordinate: $f: i \in V \mapsto x_{i}^{1} \in \mathbb{R}$.
- Geometric mesh $\mathcal{M} \Longleftrightarrow 3$ functions defined on M.

$$
f\left(x_{i}\right)=x_{i}^{1}
$$

$f\left(x_{i}\right)=\cos \left(2 \pi x_{i}^{1}\right)$

Local Averaging

Local operator: $\quad W=\left(w_{i j}\right)_{i, j \in V} \quad$ where $\quad w_{i j}=\left\{\begin{aligned}>0 & \text { if } j \in V_{i}, \\ 0 & \text { otherwise. }\end{aligned}\right.$

$$
(W f)_{i}=\sum_{(i, j) \in E} w_{i j} f_{j}
$$

Local Averaging

Local operator: $W=\left(w_{i j}\right)_{i, j \in V} \quad$ where $\quad w_{i j}=\left\{\begin{array}{rc}>0 & \text { if } j \in V_{i}, \\ 0 & \text { otherwise. }\end{array}\right.$

$$
(W f)_{i}=\sum_{(i, j) \in E} w_{i j} f_{j} .
$$

Examples: for $i \sim j$,

$$
w_{i j}=1
$$

combinatorial

$$
\begin{gathered}
w_{i j}=\frac{1}{\left\|x_{j}-x_{i}\right\|^{2}} \\
\text { distance }
\end{gathered}
$$

$$
\begin{gathered}
w_{i j}=\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right) \\
\text { conformal } \\
(\text { explanations later })
\end{gathered}
$$

Local Averaging

Local operator: $\quad W=\left(w_{i j}\right)_{i, j \in V} \quad$ where $\quad w_{i j}=\left\{\begin{array}{rc}>0 & \text { if } j \in V_{i}, \\ 0 & \text { otherwise. }\end{array}\right.$

$$
(W f)_{i}=\sum_{(i, j) \in E} w_{i j} f_{j} .
$$

Examples: for $i \sim j$,

$$
w_{i j}=1
$$

combinatorial

$$
w_{i j}=\frac{1}{\left\|x_{j}-x_{i}\right\|^{2}}
$$

distance

$$
w_{i j}=\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)
$$

conformal
(explanations later)

Local averaging operator $\tilde{W}=\left(\tilde{w}_{i j}\right)_{i, j \in V}: \quad \forall(i, j) \in E, \quad \tilde{w}_{i j}=\frac{w_{i j}}{\sum_{(i, j) \in E} w_{i j}}$.

$$
\tilde{W}=D^{-1} W \quad \text { with } \quad D=\operatorname{diag}_{i}\left(d_{i}\right) \quad \text { where } \quad d_{i}=\sum_{(i, j) \in E} w_{i j}
$$

Averaging: $\ddot{W} 1=1$.

Iterative Smoothing

Iterative smoothing: $\tilde{W} f, \tilde{W}^{2}, \ldots, \tilde{W}^{k} f$ smoothed version of f.

Triangulated Meshes

- Operators on Meshes
- Denoising by Diffusion
- Fourier on Meshes

Gradient

Gradient operator: oriented edges $E_{0} \stackrel{\text { def. }}{=}\{(i, j) \in E \backslash i<j\}$,

$$
\begin{aligned}
G: \ell^{2}(V) \longrightarrow \ell^{2}\left(E_{0}\right), & \Longleftrightarrow G: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p} \text { where } p=\left|E_{0}\right|, \\
& \Longleftrightarrow G \in \mathbb{R}^{n \times p} \text { matrix. }
\end{aligned}
$$

$$
\forall(i, j) \in E, i<j, \quad(G f)_{(i, j)} \stackrel{\text { def. }}{=} \sqrt{w_{i j}}\left(f_{j}-f_{i}\right) \in \mathbb{R} .
$$

\rightarrow Derivative along direction $\overrightarrow{x_{i} x_{j}}$.

Gradient

Gradient operator: oriented edges $E_{0} \stackrel{\text { def. }}{=}\{(i, j) \in E \backslash i<j\}$,

$$
\begin{aligned}
G: \ell^{2}(V) \longrightarrow \ell^{2}\left(E_{0}\right), & \Longleftrightarrow G: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p} \text { where } p=\left|E_{0}\right|, \\
& \Longleftrightarrow G \in \mathbb{R}^{n \times p} \text { matrix. }
\end{aligned}
$$

$$
\forall(i, j) \in E, i<j, \quad(G f)_{(i, j)} \stackrel{\text { def. }}{=} \sqrt{w_{i j}}\left(f_{j}-f_{i}\right) \in \mathbb{R} .
$$

\rightarrow Derivative along direction $\overrightarrow{x_{i} x_{j}}$.

Example: $w_{i j}=\left\|x_{i}-x_{j}\right\|^{-2}, \quad(G f)_{(i, j)}=\frac{f\left(x_{j}\right)-f\left(x_{i}\right)}{\left\|x_{i}-x_{j}\right\|}$.

Regular grid:

- $G f$ discretize $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.
$-G^{\mathrm{T}} v$ discretize $\operatorname{div}(v)=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$.

aplacian

$$
L \stackrel{\text { def. }}{=} D-W, \quad \text { where } \quad D=\operatorname{diag}_{i}\left(d_{i}\right), \quad \text { with } \quad d_{i}=\sum_{j} w_{i j}
$$

Normalized Laplacian:

$$
\tilde{L} \stackrel{\text { def. }}{=} D^{-1 / 2} L D^{-1 / 2}=\operatorname{Id}_{n}-D^{-1 / 2} W D^{1 / 2}=\operatorname{Id}_{n}-D^{1 / 2} \tilde{W} D^{-1 / 2}
$$

Remarks:

- symmetric operators $L, \tilde{L} \in \mathbb{R}^{n \times n}$.
$-L 1=0$: acts like a (second order) derivative.
- $\tilde{L} 1 \neq 0$.

Theorem: $L=G^{\mathrm{T}} G \quad$ and $\quad \tilde{L}=\left(G D^{-1 / 2}\right)^{\mathrm{T}}\left(G D^{-1 / 2}\right)$.
$\Longrightarrow L$ and \tilde{L} are symmetric positive definite.

$$
\begin{aligned}
& \langle L f, f\rangle=\|G f\|^{2}=\sum_{(i, j) \in E_{0}} w_{i j}\left\|f_{i}-f_{j}\right\|^{2} \\
& \langle\tilde{L} f, f\rangle=\left\|G D^{-1 / 2} f\right\|^{2}=\sum_{(i, j) \in E_{0}} w_{i j}\left\|\frac{f_{i}}{\sqrt{d_{i}}}-\frac{f_{j}}{\sqrt{d_{j}}}\right\|^{2}
\end{aligned}
$$

Examples of Laplacians

Example in $1 D: \quad(L f)_{i}=\frac{1}{h^{2}}\left(2 f_{i}-f_{i+1}-f_{i-1}\right)=\frac{1}{h^{2}} f *(-1,2,-1)$

$$
L \xrightarrow{h \rightarrow 0}-\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}\left(x_{i}\right)
$$

Examples of Laplacians

Example in 1D: $\quad(L f)_{i}=\frac{1}{h^{2}}\left(2 f_{i}-f_{i+1}-f_{i-1}\right)=\frac{1}{h^{2}} f *(-1,2,-1)$

$$
L \xrightarrow{h \rightarrow 0}-\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}\left(x_{i}\right)
$$

Example in 2D:

$$
\begin{aligned}
& \text { le in 2D: } \\
& \begin{array}{l}
(L f)_{i}=\frac{1}{h^{2}}\left(4 f_{i}-f_{j_{1}}-f_{j_{2}}-f_{j_{3}}-f_{j_{4}}\right)=\frac{1}{h^{2}} f *\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right) \\
L \xrightarrow{h \rightarrow 0}-\frac{\partial^{2} f}{\partial x^{2}}\left(x_{i}\right)-\frac{\partial^{2} f}{\partial y^{2}}\left(x_{i}\right)=\Delta f\left(x_{i}\right) .
\end{array}
\end{aligned}
$$

$L=G^{\mathrm{T}} G f \quad$ discretize $\quad \Delta f=\operatorname{div}(\nabla f)$.

Iterative Smoothing

Initialization: $k=1,2,3, f_{k}^{(0)}=f_{k}$.
Iteration: $k=1,2,3, f_{k}^{(s+1)}=\tilde{W} f_{k}^{(s)}, \quad f_{k}^{(s+1)}(i)=\frac{1}{\left|V_{i}\right|} \sum_{(j, i) \in V_{i}} f_{k}^{(s)}(i)$
Denoised: choose s, and $\tilde{x}_{i}=\left(f_{1}^{(s)}, f_{2}^{(s)}, f_{3}^{(s)}\right)$

Iterative Smoothing

Initialization: $k=1,2,3, f_{k}^{(0)}=f_{k}$.
Iteration: $k=1,2,3, f_{k}^{(s+1)}=\tilde{W} f_{k}^{(s)}, \quad f_{k}^{(s+1)}(i)=\frac{1}{\left|V_{i}\right|} \sum_{(j, i) \in V_{i}} f_{k}^{(s)}(i)$
Denoised: choose s, and $\tilde{x}_{i}=\left(f_{1}^{(s)}, f_{2}^{(s)}, f_{3}^{(s)}\right)$
Problem: optimal choice of s

Oracle: $\max _{s} \operatorname{SNR}\left(x^{0}, x^{(s)}\right)$.

Heat diffusion: $\forall t>0, F^{(t)}: V \rightarrow \mathbb{R}$ solving

$$
\frac{\partial F^{(t)}}{\partial t}=-D^{-1} L F^{(t)}=\left(\operatorname{Id}_{n}-\tilde{W}\right) F^{(t)} \quad \text { and } \quad \forall i \in V, F^{(0)}(i)=f(i)
$$

Heat Diffusion

Heat diffusion: $\forall t>0, F^{(t)}: V \rightarrow \mathbb{R}$ solving

$$
\frac{\partial F^{(t)}}{\partial t}=-D^{-1} L F^{(t)}=\left(\operatorname{Id}_{n}-\tilde{W}\right) F^{(t)} \quad \text { and } \quad \forall i \in V, F^{(0)}(i)=f(i)
$$

Discretization: time step $\delta, \#$ iterations $K \stackrel{\text { def. }}{=} t / \delta$.

$$
\frac{1}{\delta}\left(f^{(s+1)}-f^{(s)}\right)=-D^{-1} L f^{(s)} \Longrightarrow f^{(s+1)}=f^{(s)}-\delta D^{-1} L f^{(s)}=(1-\delta) f^{(s)}+\delta \tilde{W} f^{(s)}
$$

Heat Diffusion

Heat diffusion: $\forall t>0, F^{(t)}: V \rightarrow \mathbb{R}$ solving

$$
\frac{\partial F^{(t)}}{\partial t}=-D^{-1} L F^{(t)}=\left(\operatorname{Id}_{n}-\tilde{W}\right) F^{(t)} \quad \text { and } \quad \forall i \in V, F^{(0)}(i)=f(i)
$$

Discretization: time step $\delta, \#$ iterations $K \stackrel{\text { def. }}{=} t / \delta$.

$$
\frac{1}{\delta}\left(f^{(s+1)}-f^{(s)}\right)=-D^{-1} L f^{(s)} \Longrightarrow f^{(s+1)}=f^{(s)}-\delta D^{-1} L f^{(s)}=(1-\delta) f^{(s)}+\delta \tilde{W} f^{(s)}
$$

Theorem: stable and convergent scheme if $\delta<1$ (CFL condition)

$$
f^{(t / \delta)} \xrightarrow{\delta \rightarrow 0} \quad F^{(t)}
$$

\longrightarrow see later for a proof.

Heat Diffusion

Heat diffusion: $\forall t>0, F^{(t)}: V \rightarrow \mathbb{R}$ solving

$$
\frac{\partial F^{(t)}}{\partial t}=-D^{-1} L F^{(t)}=\left(\operatorname{Id}_{n}-\tilde{W}\right) F^{(t)} \quad \text { and } \quad \forall i \in V, F^{(0)}(i)=f(i)
$$

Discretization: time step $\delta, \#$ iterations $K \stackrel{\text { def. }}{=} t / \delta$.
$\frac{1}{\delta}\left(f^{(s+1)}-f^{(s)}\right)=-D^{-1} L f^{(s)} \Longrightarrow f^{(s+1)}=f^{(s)}-\delta D^{-1} L f^{(s)}=(1-\delta) f^{(s)}+\delta \tilde{W} f^{(s)}$.

Theorem: stable and convergent scheme if $\delta<1$ (CFL condition)

$$
f^{(t / \delta)} \xrightarrow{\delta \rightarrow 0} \quad F^{(t)}
$$

\longrightarrow see later for a proof.

Remark: if $\delta=1, f^{(s)}=\tilde{W}^{k} f$.
\longrightarrow still stable in most cases (see later).
5555

PDEs on Meshes
Heat diffusion: $\frac{\partial f}{\partial t}=\Delta f$ and $f(x, 0)=f_{0}(x)$

Diffusion of $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ coordinates:

Diffusion of $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ coordinates:

Initialization:

```
% Laplacian matrix
L=D-W;
% initialization
f1 = f;
```

Explicit Euler:

```
for i=1:3
    f1 = f1 + tau*L*f1;
end
```


Mesh Denoising with Heat Diffusion

Optimal Stopping Time

Mesh: 3 functions X/Y/Z: $x_{i}=\left(f_{1}(i), f_{2}(i), f_{3}(i)\right) \in \mathbb{R}^{3}$.
Denoised: $x^{(t)}=\left(f_{1}^{(s)}, f_{2}^{(s)}, f_{3}^{(s)}\right)$ for $t=s \delta$.
Problem: optimal choice of t
Oracle: $t^{\star}=\max _{t} \operatorname{SNR}\left(x^{0}, x^{(t)}\right)$.

Triangulated Meshes

- Operators on Meshes
- Denoising by Diffusion
- Fourier on Meshes

Laplacian Eigen-decomposition

$$
\begin{aligned}
& \tilde{L}=D^{-1 / 2} L D^{-1 / 2}=\mathrm{Id}_{n}-D^{-1 / 2} W D^{-1 / 2} \\
& \tilde{L}=\left(G D^{-1 / 2}\right)^{\mathrm{T}}\left(G D^{-1 / 2}\right) \quad \Longrightarrow \quad \tilde{L} \text { is positive semi-definite. }
\end{aligned}
$$

Eigen-decomposition of the Laplacian: $\exists U, \quad U^{\mathrm{T}} U=\mathrm{Id}_{n}$,

$$
\tilde{L}=U \Lambda U^{\mathrm{T}} \quad \text { where } \quad \Lambda=\operatorname{diag}_{\omega}\left(\lambda_{\omega}\right) \quad \text { and } \quad \lambda_{1} \leq \ldots \leq \lambda_{n} .
$$

Laplacian Eigen-decomposition

$$
\tilde{L}=D^{-1 / 2} L D^{-1 / 2}=\operatorname{Id}_{n}-D^{-1 / 2} W D^{-1 / 2}
$$

$$
\tilde{L}=\left(G D^{-1 / 2}\right)^{\mathrm{T}}\left(G D^{-1 / 2}\right) \quad \Longrightarrow \quad \tilde{L} \text { is positive semi-definite. }
$$

Eigen-decomposition of the Laplacian: $\exists U, \quad U^{\mathrm{T}} U=\mathrm{Id}_{n}$,

$$
\tilde{L}=U \Lambda U^{\mathrm{T}} \quad \text { where } \quad \Lambda=\operatorname{diag}_{\omega}\left(\lambda_{\omega}\right) \quad \text { and } \quad \lambda_{1} \leq \ldots \leq \lambda_{n} .
$$

Theorem: $\forall i, \lambda_{i} \in[0,2]$ and

- If M is connected then $0=\lambda_{1}<\lambda_{2}$.
$-\lambda_{n}=2$ if and only if M is 2 -colorable.

Laplacian Eigen-decomposition
$\tilde{L}=D^{-1 / 2} L D^{-1 / 2}=\operatorname{Id}_{n}-D^{-1 / 2} W D^{-1 / 2}$
$\tilde{L}=\left(G D^{-1 / 2}\right)^{\mathrm{T}}\left(G D^{-1 / 2}\right) \quad \Longrightarrow \quad \tilde{L}$ is positive semi-definite.
Eigen-decomposition of the Laplacian: $\exists U, \quad U^{\mathrm{T}} U=\mathrm{Id}_{n}$,

$$
\tilde{L}=U \Lambda U^{\mathrm{T}} \quad \text { where } \quad \Lambda=\operatorname{diag}_{\omega}\left(\lambda_{\omega}\right) \quad \text { and } \quad \lambda_{1} \leq \ldots \leq \lambda_{n} .
$$

Theorem: $\forall i, \lambda_{i} \in[0,2]$ and

- If M is connected then $0=\lambda_{1}<\lambda_{2}$.
$-\lambda_{n}=2$ if and only if M is 2 -colorable.
Eigen-basis: $U=\left(u_{\omega}\right)_{\omega}$ orthogonal basis of $\mathbb{R}^{n} \simeq \ell^{2}(V)$.

$$
u_{\omega}:\left\{\begin{array}{ccc}
V & \longrightarrow & \mathbb{R} \\
i & \longmapsto & u_{\omega}(i)
\end{array}\right.
$$

Orthogonal expansion: $\left\langle u_{\omega}, u_{\omega^{\prime}}\right\rangle=\delta_{\omega}^{\omega^{\prime}}$,

$$
\forall f \in \ell^{2}(V), \quad f=\sum_{\omega}\left\langle f, u_{\omega}\right\rangle u_{\omega} .
$$

Examples of Eigen-decompositions
Laplacian in 1-D: $\quad L f=(-1 / 2,1,-1 / 2) \star f$
Theorem (in 1D):

$$
u_{\omega}(k)=n^{-1 / 2} e^{\frac{2 i \pi}{n} k \omega}
$$

$$
\lambda_{\omega}=\sin ^{2}\left(\frac{\pi}{n} \omega\right)
$$

Examples of Eigen-decompositions

Laplacian in 1-D:

$$
L f=(-1 / 2,1,-1 / 2) \star f
$$

Theorem (in 1D):

$$
u_{\omega}(k)=n^{-1 / 2} e^{\frac{2 i \pi}{n} k \omega} \quad \lambda_{\omega}=\sin ^{2}\left(\frac{\pi}{n} \omega\right)
$$

Laplacian in 2-D:

$$
L f=\left(\begin{array}{ccc}
0 & -1 / 4 & 0 \\
-1 / 4 & 1 & -1 / 4 \\
0 & -1 / 4 & 0
\end{array}\right) \star f
$$

Theorem (in 2D): $n=n_{1} n_{2}, \omega=\left(\omega_{1}, \omega_{2}\right)$

$$
u_{\omega}(k)=n^{-1} e^{\frac{2 i \pi}{n}\langle k, \omega\rangle} \quad \lambda_{\omega}=\frac{1}{2} \sin ^{2}\left(\frac{\pi}{n} \omega_{1}\right)+\frac{1}{2} \sin ^{2}\left(\frac{\pi}{n} \omega_{2}\right)
$$

On a 3D mesh: $\left(u_{\omega}\right)_{\omega}$ is the extension of the Fourier basis.

Fourier Transform on Meshes

Manifold-Fourier transform: for $f \in \ell^{2}(V)$,

$$
\Phi(f)(\omega)=\hat{f}(\omega) \stackrel{\text { def. }}{=}\left\langle D^{1 / 2} f, u_{\omega}\right\rangle \Longleftrightarrow
$$

$$
\left\{\begin{array}{l}
\Phi(f)=\hat{f}=U^{\mathrm{T}} D^{1 / 2} f \\
\Phi^{-1}(\hat{f})=D^{-1 / 2} U \hat{f}
\end{array}\right.
$$

Theorem: $\Phi \tilde{W} \Phi^{-1}=\operatorname{Id}_{n}-\Lambda$,

$$
\begin{gathered}
\Longrightarrow \quad \hat{W} f(\omega)=\left(1-\lambda_{\omega}\right) \hat{f}(\omega) \\
\text { Proof: } \quad \Phi \tilde{W} \Phi^{-1}=U^{*} \frac{D^{1 / 2} W D^{-1 / 2}}{\operatorname{Id}_{n}-\tilde{L}} U=\mathrm{Id}_{n}-\Lambda
\end{gathered}
$$

Fourier Transform on Meshes

Manifold-Fourier transform: for $f \in \ell^{2}(V)$,

$$
\Phi(f)(\omega)=\hat{f}(\omega) \stackrel{\text { def. }}{=}\left\langle D^{1 / 2} f, u_{\omega}\right\rangle \Longleftrightarrow
$$

$$
\left\{\begin{array}{l}
\Phi(f)=\hat{f}=U^{\mathrm{T}} D^{1 / 2} f \\
\Phi^{-1}(\hat{f})=D^{-1 / 2} U \hat{f}
\end{array}\right.
$$

Theorem: $\Phi \tilde{W} \Phi^{-1}=\operatorname{Id}_{n}-\Lambda$,
$\Longrightarrow \quad \widehat{W} f(\omega)=\left(1-\lambda_{\omega}\right) \hat{f}(\omega)$
Proof: $\quad \Phi \tilde{W} \Phi^{-1}=U^{*} D^{1 / 2} W D^{-1 / 2} U=\operatorname{Id}_{n}-\Lambda$ $\mathrm{Id}_{n}-\tilde{L}$

Theorem: if $\lambda_{n}<2$ (i.e. M is not 2-colorable),

$$
\tilde{W}^{k} f^{k \rightarrow+\infty} f^{\star}=\langle f, d\rangle d^{-1}
$$

$$
\tilde{W}^{k} f=\Phi^{-1}\left(\operatorname{Id}_{n}-\Lambda\right)^{k} \Phi(f) \longrightarrow f^{\star}
$$

Mesh Approximation and Compression

Orthogonal basis $U=\left(u_{\omega}\right)_{\omega}$ of $\ell^{2}(V) \simeq \mathbb{R}^{n}$, where $\tilde{L}=U \Lambda U^{\mathrm{T}}$.

$$
f=\sum_{\omega=1}^{n}\left\langle f, u_{\omega}\right\rangle u_{\omega} \quad M \text {-term approx. } \quad f_{M} \stackrel{\text { def. }}{=} \sum_{\omega=1}^{M}\left\langle f, u_{\omega}\right\rangle u_{\omega} .
$$

Error decay: $E(M) \stackrel{\text { def. }}{=}\left\|f-f_{M}\right\|^{2}=\sum_{\omega>M}\left|\left\langle f, u_{\omega}\right\rangle\right|^{2}$.

Mesh Approximation and Compression

Orthogonal basis $U=\left(u_{\omega}\right)_{\omega}$ of $\ell^{2}(V) \simeq \mathbb{R}^{n}$, where $\tilde{L}=U \Lambda U^{\mathrm{T}}$.

$$
f=\sum_{\omega=1}^{n}\left\langle f, u_{\omega}\right\rangle u_{\omega} \quad \stackrel{M \text {-term approx. }}{\Longrightarrow} \quad f_{M} \stackrel{\text { def. }}{=} \sum_{\omega=1}^{M}\left\langle f, u_{\omega}\right\rangle u_{\omega} .
$$

Error decay: $E(M) \stackrel{\text { def. }}{=}\left\|f-f_{M}\right\|^{2}=\sum_{\omega>M}\left|\left\langle f, u_{\omega}\right\rangle\right|^{2}$.

$$
\text { Good basis } \Longleftrightarrow E(M) \text { decays fast. }
$$

Example in $1 D$: if f is C^{α} on $\mathbb{R} /(2 \pi \mathbb{Z})$,

$$
|\hat{f}(\omega)| \leq\left\|f^{(\alpha)}\right\|_{\infty}|\omega|^{-\alpha} .
$$

Example on a mesh: f is smooth if $\|\tilde{L} f\|$ is small.

$$
\left|\left\langle f, u_{\omega}\right\rangle\right|=\frac{1}{\lambda_{\omega}}\left|\left\langle f, \tilde{L} u_{\omega}\right\rangle\right| \leqslant \frac{1}{\lambda_{\omega}}\|\tilde{L} f\|
$$

Intuition: $\lambda_{\omega} \sim|\omega|^{2}$.

Laplace Spectrum

$$
\frac{1+2}{1858}
$$

