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* What is the Lasso

e |asso with an orthogonal design

* From projected gradient to proximal gradient

e Optimality conditions and subgradients (LARS algo.)

e Coordinate descent algorithm

... with some demos
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Lasso

1
r* € argmin §Hb — AmH2 + Al|x]|1

p
with AcR™  A>0 |fi=) |z
1=1

e Commonly attributed to [Tibshirani 96] (> 19000 citations)
* Also known as Basis Pursuit Denoising [Chen 95] (> 9000 c.)

* Convex way of promoting sparsity in high dimensional
regression / inverse problems.

* Can lead to statistical guarantees even if 1 ~ log(p)
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Using CVX Toolbox

n

A

b

cvx begin

variable x(n)

dual variable y
minimize(0.5*norm(A*x - b,
cvx end

Algorithm 0

randn(n/2,n);
randn(n/2,1);
gamma

2) + gamma * norm(Xx,

http://cvxr.com/cvx/
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Algorithm |

Rewrite: x; = x:r +x, = max(x;,0) + min(x;, 0)

z;| = 277 — x; = max(x;,0) + max(—z;,0)

0
|

|zl = =

Leads to:

z* € argmin —Hb —[A, —A]z||* + )\Zzz

zERZp

* This is a simple smooth convex optimization problem with
positivity constraints (convex constraints)
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Gradient Descent

min f(z)

With f smooth with L-Lipschitz gradient:

IVf(z) =Vl <Lz —y|

Gradient

Gradient descent reads:
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Projected gradient Descent

., f(z)

With C a convex set and f smooth with L-Lipschitz gradient

projected gradient reads:

Orthogonal projection on C
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What if A is orthogonal!

* Let’s assume we have a square orthogonal design matrix
A'A=AA" =1,
One has: ||b — AxH2 = HATb — LL‘H2
So the Lasso boils down to minimizing:

1

r* = argmin —HATb — :UH2 + Allx]|1
xERﬁ .

xr = argmmz (5((AT5)7; — «’L‘z')2 T M%\) (p 1d problems)
xeRY

Tt = ProXyj. |1, (ATb) (Definition of the proximal operator)
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Proximal operator of LI norm

The soft-thresholding: ¢ — sign(c)(|c| — A\)
Sx(e)

is the solution of

1
min 5(6_ r)? + \- ||
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Algorithm with A orthogonal

c = A.T.dot(b)
x_star = np.sign(c) * np.maximum(np.abs(c) - lambd, 0.)

=) python
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What if A is NOT orthogonal?

Let us define:  f(z) = %Hb—A:EH2
Leads to: Viix)= —AT(b — Ax)
The Lipschitz constant of the gradient: L = HATAHQ

Quadratic upper bound of f at the previous iterate:

"t = argmin f(2%) + (z — z%) " V £ («)

xERﬁ
L k(2
o + 5 llz =277+ Alllls
1 1 A
T = argmin §H£L’ — (2" — va(xk))HQ + Zqul
xERﬁ
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Algorithm 2: Proximal gradient descent

That we can rewrite:

| 1
= argmin §HCE — (ZUk — va(iﬁ'k))HZ + — |zl

D
w€R+

1
__ k k
[Daubechies et al. 2004, Combettes et al. 2005]

1
Remark: If f is not strongly convex f(@®) = f(z*) =0 (E)

Very far from an exponential rate of GD with strong convexity

Remark: There exist so called “accelerated” methods known as
FISTA, Nesterov acceleration...
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Proximal gradient

alpha = 0.1 # Lambda parameter
L = linalg.norm(A)**2
X = np.zeros(A.shape[l])
for 1 in range(max iter):
Xx += (1. / L) * np.dot(A.T, b - np.dot(A, X))
X = np.sign(X) * np.maximum(np.abs(X) - (alpha / L), 0)

6

D

Cost function
w

N
T

0 100 200 300 400 500
Iteration
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Pros of proximal gradient

* First order method (only requires to compute gradients)

* Algorithms scalable even if p is large (needs to store A in

memory)

 Great if A is an implicit linear operator (Fourier,Wavelet, MDCT,

etc.) as dot products have some logarithmic complexities.
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Subgradient and subdifferential

The subdifferential of f at xp is:

A
Properties

e The subdifferential is a convex set

® X0 is a minimizer of fif 0 € 0f(x¢) // X= >

Exercise: Whatis 9| [(0) =7
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Path of solutions

Lemma [Fuchs 97] : Let x"be a solution of the Lasso

1
r* € argmin §Hb — Az||* + )|z

Let the support I = {is.t. x; # 0}

Then: AT (Az* —b) + Asign(z}) =0
AL (Az" = b)]o0 < A

And also:

ry = (A; Ar)~ (A7 b — Asign(a]))
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Algorithm 3: Homotopy and LARS

The idea is to compute the full path of solution noticing
that for a given sparsity / sign pattern the solution if affine.

vy = (A Ar) "' (A7 b — sign(a]))

The LARS algorithm [Osborne 2000, Efron et al. 2004]
consists if finding the breakpoints along the path.
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Pros/Cons of LARS

Pros:

e Gives the full path of solution

* Fast with support is small and one can compute Gram matrix
Cons:

e Scales with the size of the support

* Hard to make it numerically stable

* One can have many many breakpoints [Mairal et al. 2012]
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Coordinate descent (CD)

Limitation of proximal gradient descent:

|
L

k+1
o = proxy ), (2

Vf(z"))

if L is big we make tiny steps !

The idea of coordinate descent (CD) is to update one coefficient
at a time (also known as univariate relaxation methods in
optimization or Gauss Seidel’s method).

Hope: make bigger steps.

Spoiler: It is the state of the art in machine learning problems (cf.
GLMNET R package, scikit-learn) [Friedman et al. 2009]

Alex Gramfort Algorithms for the Lasso



Coordinate descent (CD)
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Coordinate descent (CD)
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Warning: It does not always work !
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Algorithm 4: Coordinate descent (CD)

p

Since the regularization |z||1 = Z ;]
1=1

is separable function CD works for the Lasso [Tseng 2001 ]

Proximal coordinate descent algorithm works:

fork=1... K
i = (k mod p) + 1
1
ri T = pI‘OX%(CEf T (V ("))

L, < L  we make bigger steps !
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Algorithm 4: Coordinate descent (CD)

* Their exist many “tricks” to make CD fast for the Lasso
* |azy update of the residuals

* Pre-computation of certain dot products

* Active set methods

* Screening rules

e More in the next talk...
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Conclusion

* What is the Lasso

e [asso with an orthogonal design

* From projected gradient to proximal gradient

e Optimality conditions and subgradients (LARS algo.)

e Coordinate descent algorithm
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