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Introduction: sparse approximation

” It is futile to do with more things that which can be done with fewer”

William of Ockham

But

Analyse, explain, represent. . . signals.

Exemples

Automatic transciption, source separation, coding. . .

Problem: How to represent a signal and select relevant “information” ?
Sparsity principle: explain a signal with few elements.
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Examples of representation of an audio signal
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Figure : Time-frequency images. Top: signal, bottom-left: representation adapted to
transceents. Bottom-right, representation adapted to tonals.

The characteristics of interest are rarely directly observable.
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Notations and definitions

Some notations

Let s ∈ CM a signal.

Let Φ ∈ CM×N , M ≤ N the matrix of a dictionnary {ϕk} (ie an
over-complete set), constructed as a set of time-frequency atoms.

Let y = s + b a noisy measure of a signal s.

Definition: synthesis coefficients

Let α ∈ CN such that s = Φα =
∑

k αkϕk .
αk are called synthesis coefficients.

if N > M, there exists an infinity of such a representation

Definition: analysis coefficients

We call analysis coefficients: {〈y , ϕk〉} = ΦT y
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Sparsity: synthesis approach

Goal: find a “god repsentation” ŝ of s such that ŝ = Φα̂

Hypothesis: s admits a sparse representation in the choosen dictionnary.
Ideal solution:

α̂ = argmin
α
‖α‖0 sc s = Φα

Noisy observation:

α̂ = argmin
α
‖y − Φα‖2

2 + λ‖α‖0

Probleme very hard to solve in a finite time ⇒ we relax the`0 constraint
into `1

LASSO [Tibshirani 96] or Basis Pursuit Denoising [Chen et al. 98]:

α̂ = argmin
α
‖y − Φα‖2

2 + λ‖α‖1
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Frameworks

Mathematical framework

y ∈ RM

x ∈ RN

A ∈ RM.N

Optimization framework

x = argminL(y,A, x) + P(x;λ)

1 A convex loss or data term L(y,A, x) measuring the fit between the
observed mixture y and the source signal x given the mixing system
A;

2 A regularization term P modeling the assumptions about the
sources,

3 An hyperparameter λ ∈ R+ governing the balance between the data
term and the regularization term.
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The Loss

Traditional assumption: Gaussian noise

L(y,A, x) =
1

2
‖y − Ax‖2

2

But other possible choices

Impulsive noise:

L(y,A, x) =
1

2
‖y − Ax‖1

Poisson noise:

L(y,A, x) = Ax− y + y ln
( y

Ax

)
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The Penalty

Goal: Model the prior on the sources.

“Analysis” prior

Models the “physical” assumptions on the sources

Minimum energy : 1
2‖x‖

2
2 [Tikhonov, 77]

Total variation (images) : ‖∇x‖1 [ROF, 92]

Sometimes, we need more flexibility: priors are not always in the
“samples” domain

Matthieu Kowalski *-Lasso Therapy: a sparse synthesis approach. 11 / 34



Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical illustration
General approach Mixed Norms

Optimization framework with dictionary

1 A Dictionary Φ

2 A convex loss or data term L(y,A,α) measuring the fit between the
observed mixture y and some synthesis coefficients α, such that
x = Φα, given the mixing system A;

3 A regularization term P modeling the assumptions about the
sources, in the synthesis coefficient domain

4 An hyperparameter λ ∈ R+ governing the balance between the data
term and the regularization term.
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The Dictionary

Synthesis point of view

Assume x can be written as

x =
K∑

k=1

αkϕk

= Φα

with
Φ ∈ CN.K , k ≥ N

Examples

Gabor

wavelets

Union of Gabor (hybrid model or Morphological Component
Analysis): x = x1 + x2 = Φ1α1 + Φ2α2

Frames ([Balazs et al., 2013])
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The penalty (returns)

Sparse approximation: key idea
x ∈ RN admits a sparse decomposition inside a dictionnary of waveforms
{ϕk}Kk=1:

x =
∑
k∈Λ

αkϕk

with Λ ⊂ {1, . . . ,K}

Given a (noisy) observation y = Ax + n, the Lasso/Basis Pursuit
Denoising [Tibshirani, 96], [Chen et al. 98] estimate reads:

α̂ = argmin
α

1

2
‖y − AΦα‖2 + λ‖α‖1

and
x̂ = Φα̂
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Mixed norms: definition

Definition [Benedek et al. 61]

Let {αg ,m} a double indexed sentence. We call mixed norm `p,q of α the
norm

‖α‖p,q =

∑
g

(∑
m

|αg ,m|p
)q/p

1/q

Figure : A grouping organisation doubly indexed.
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Mixed norms: remarks

General remarks

`p,q is a true norm for p, q ≥ 1.

Cases p = +∞ ou q =∞ are obtained by replacing the
corresponding norm by the supremum.

We can define corresponding quasi-normes for p, q < 1.

We generalize it on several levels [MK & AG 10].

Some particlar case in regression

p = q = 2 Ridge regression: no sparsity, no structure

p = q = 1 LASSO (or BPDN) regression: sparsity whithout
structure

p = 1 and q = 2 Group-LASSO [Yuan et al. 06] (or joint sparsity
[Fornasier et al. 08], or Multiple measurement vector [Cotter et al
05]) regression: sparisty between groups.

p = 2 and q = 1 Elitist-LASSO [MK 09, MK & BT 09] regression:
sparsity inside the groups.
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Regression and mixed norms

We are interrested by the following optimization problem

α̂ = argmin
α
‖y −Φα‖2

2 + λ‖α‖qp,q

Remark

This problem is convex for p, q ≥ 1 and strictly convex for p, q > 1.

Decoupling on the groups, not on coefficients
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Proximity operators

we suppose that Φ is orthogonal. We denote by ỹ = ΦT y

LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖1

α̂g ,m = arg(ỹg ,m) (|ỹg ,m| − λ)+

G-LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖2,1

α̂g ,m = ỹg ,m

(
1− λ

‖ỹg‖2

)+

E-LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖2
1,2

α̂g ,m = arg(ỹg ,m)

(
|ỹg ,m| −

λ

1 + λLg
‖|ỹg‖|

)+
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(Relaxed) ISTA

Let α(0) = 0, L ≥ 1
‖Φ∗Φ‖ , 0 ≤ µ < 1, and tmax ∈ N.

For t = 0 to tmax

α(t+1/2) = γ(t) + Φ∗(y −Φγ(t))/L

α(t+1) = S(α(t+1/2), λ/L)

γt+1 = α(t+1) + µ(t+1)(α(t+1) −α(t))

End For

with S a proximity operator (soft thresholding for `1).

Convergence proved by several authors

[Combettes & Wajs 05] forward-backward (proximity operators);

[Daubechies & al 04] Opial’s fixed point theorem;

[Figuereido & Nowak 03] EM algorithm;

Accelerated version by [Nesterov 07], [Beck & Teboulle 09] (FISTA).
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Limitations

Biased coefficients: large coefficients are shrinked [Gao, Bruce 97]

Lake of flexibility for structures: needs to define an adequate convex
penalty (not always simple)

Could we play directly on the thresholding step ?
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Thresholding rules

Definition [Antoniadis 07]

1 S(.;λ) is an odd function. ( S+(.;λ) is used to denote the S(.;λ)
restricted to R+.)

2 S(.;λ) is a shrinkage rule: 0 ≤ S+(t;λ) ≤ t, ∀t ∈ R+.

3 S+ is nondecreasing on R+, and lim
t→+∞

S(t;λ) = +∞
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Examples

Soft [Donoho, Johnstone 94]

S(x ;λ) = x

(
1− λ

|x |

)+

Hard Soft [Donoho, Johnstone 94]

S(x ;λ) = x1|x|>λ

NonNegativeGarrote (NNGarrote) [Gao 98]

S(x ;λ) = x

(
1− λ

|x |2

)+

Firm [Gao, Bruce 97]

S(x ;λ1;λ2) =


0 if |x | < λ1

xλ2(1− λ1
|x| )

λ2−λ1 if λ1 ≤ |x | < λ2

x |x | > λ2

SCAD [Antoniadis, Fan 01]

S(x ;λ; a) =


x(1− λ

|x| )
+ if |x | < 2λ

x(a−1− aλ
|x| )

a−2 if 2λ ≤ |x | < aλ

x if |x | > aλ
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Examples
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Properties of Thresholding rules

Definition: semi-convex fonction

A function f is said to be semi-convex, iff there exists c such that

x 7→ f (x) +
c

2
‖x‖2

is convex

Proposition

We can associate a semi-convex penalty P(.;λ), with c ≤ 1 to any
thresholding rules. Moreover, 1

1−c is an upper-bound of S′(.;λ).
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Convergence results

Theorem

ISTA converges with any thresholding rules

Relaxed ista converges for 0 ≤ µ < 1− c , where c is an
upper-bound of S′(.;λ)

Examples

NNGarrote (c = 1/2)

P(x ;λ) = λ2 + asinh

(
|x |
2λ

)
+ λ2 |x |√

x2 + 4λ2 + |x |

SCAD (c = a− 1)

P(x ;λ) =


λx if x ≤ λ
(aλx−x2/2)

a−1 if λ < x ≤ aλ

aλ if x > aλ
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Windowed Group-LASSO

Back to the model y = Φα+ b, with Φ orthonormal. Back to a simple
indexing, and for each index k , we define a neighborhood g(k).

Windowed G-Lasso [MK & BT 09], [K et al. 13]

α̂k = ỹk

1− λ√ ∑
m∈g(k)

|ỹm|2


+

= ỹk

(
1− λ

‖ỹg(k)‖2

)+

with ỹ = Φ∗y Figure : WG-LASSO. Two overlapping
groups: neighborhood of k1 and k2.

Similar thresholding rules introduced by [Cai & Silvermanss 01] for wavelet
thresholding.
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A family of shrinkage operators

α = S(y) is given coordinatewise:

Lasso:

αk = yk

(
1− λ

|yk |

)+

NNGarrote / Empirical Wiener

αk = yk

(
1− λ

|yk |2

)+

Windowed Group Lasso

αk = ỹk

(
1− λ

‖ỹg(k)‖2

)+

Empirical Persistent Wiener [Siedenburg 13]

αk = ỹk

(
1− λ

‖ỹg(k)‖2
2

)+
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Tonal/transcient separation - 1

Excerpt of Mamavatu from Susheela Raman. Length of windows analysis
for MDCT:

For tonal layer: 4096 samples (93 ms) (Left)

For transicent layer: 128 samples (3 ms) (Right)
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Tonal/transcient separation - 2

Figure : Left: tonal layers. Right: transcient layers. From top to bottom: LASSO/LASSO,
LASSO/ELASSO, LASSO/GLASSO.
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