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Introduction: sparse approximation

" It is futile to do with more things that which can be done with fewer”

William of Ockham

Analyse, explain, represent... signals.

Automatic transciption, source separation, coding. . .

Problem: How to represent a signal and select relevant “information” ?
Sparsity principle: explain a signal with few elements.
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Examples of representation of an audio signal

FIGURE : Time-frequency images. Top: signal, bottom-left: representation adapted to
transceents. Bottom-right, representation adapted to tonals.

The characteristics of interest are rarely directly observable.
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Notations and definitions

Some notations

o Let s € CM asignal.

o Let ® € CM*N M < N the matrix of a dictionnary {p,} (ie an
over-complete set), constructed as a set of time-frequency atoms.

@ Let y = s+ b a noisy measure of a signal s.

Definition: synthesis coefficients

Let a € CN such that s = da = Y, aupx.
a are called synthesis coefficients.
if N > M, there exists an infinity of such a representation

Definition: analysis coefficients

We call analysis coefficients: {{y, i)} = ®Ty
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Sparsity: synthesis approach

Goal: find a “god repsentation” § of s such that § = ®&

Hypothesis: s admits a sparse representation in the choosen dictionnary.
Ideal solution:
& = argmin |lallp sc s = P«
«

Noisy observation:

& = argmin [ly — ®a3 + Al allo
«

Probleme very hard to solve in a finite time = we relax thely constraint
into /1

LASSO [Tibshirani 96] or Basis Pursuit Denoising [Chen et al. 98]:

& = argmin ||y — ®all3 + Ao
«
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An optimization framework

Frameworks

Mathematical framework

e ycRM
e x e RN
e Ac RMN

Optimization framework

x = argmin L(y, A, x) + P(x; A)

Q A convex loss or data term L(y, A, x) measuring the fit between the
observed mixture y and the source signal x given the mixing system
A

@ A regularization term P modeling the assumptions about the
sources,

© An hyperparameter A € R governing the balance between the data
term and the regularization term.
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Traditional assumption: Gaussian noise

1
E(y,A,X) = EHY - AX”%

But other possible choices

@ Impulsive noise:

1
’C’(ya A,X) = E”y - AX”l

@ Poisson noise:

L(y,A,x) = Ax—y+yln (%)
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The Penalty

Goal: Model the prior on the sources.

“Analysis” prior

Models the “physical” assumptions on the sources
® Minimum energy : 1||x||3 [Tikhonov, 77]
e Total variation (images) : ||Vx||1 [ROF, 92]

Sometimes, we need more flexibility: priors are not always in the
“samples” domain

Matthieu KOWALSKI *-Lasso Therapy: a sparse synthesis approach.



An optimization framework

__Introduction: sparse approximation An optimization framework _lterative Thresholding _Numericalillustration
Optimization framework with dictionary

@ A Dictionary &

@ A convex loss or data term L(y, A, &) measuring the fit between the
observed mixture y and some synthesis coefficients a, such that
x = P, given the mixing system A;

@ A regularization term P modeling the assumptions about the
sources, in the synthesis coefficient domain

@ An hyperparameter A € R governing the balance between the data
term and the regularization term.
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An optimization framework

The Dictionary

Synthesis point of view

Assume x can be written as

K
k=1
=P

with
becCVK k>N

@ Gabor
@ wavelets

@ Union of Gabor (hybrid model or Morphological Component
Analysis): x = x1 + xp = @101 + P

o Frames ([Balazs et al., 2013])
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The penalty (returns)

Sparse approximation: key idea
x € RN admits a sparse decomposition inside a dictionnary of waveforms

{‘Pk}’szl:

X = Zakgok

ke
with AcC {1,...,K}

Given a (noisy) observation y = Ax + n, the Lasso/Basis Pursuit
Denoising [Tibshirani, 96], [Chen et al. 98] estimate reads:

1
& = argmin EHY — Ada? + Al

and
x=0&
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An optimization framework

Mixed norms: definition
Definition [Benedek et al. 61]

Let {ag m} a double indexed sentence. We call mixed norm £, ; of a the
norm

a/p\ Y4

ledlp,g = Z Z|Ofg7m|P
g m

] M) [ ] <]
s | s | s || x| |
MIFEIIEIE
£ | x| || x| |
§ s ||| || x| |
s | || x| |
MIEAEEAE:
L P 4 ]
Groups

FIGURE : A grouping organisation doubly indexed.
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An optimization framework

Mixed norms: remarks

General remarks

@ (,q is a true norm for p,q > 1.

o Cases p = +00 ou g = oo are obtained by replacing the
corresponding norm by the supremum.

@ We can define corresponding quasi-normes for p,q < 1.
@ We generalize it on several levels [MK & AG 10].

Some particlar case in regression

@ p = g = 2 Ridge regression: no sparsity, no structure

@ p=g=1LASSO (or BPDN) regression: sparsity whithout
structure

@ p=1and g =2 Group-LASSO [Yuan et al. 06] (or joint sparsity
[Fornasier et al. 08], or Multiple measurement vector [Cotter et al
05]) regression: sparisty between groups.

@ p=2and g =1 Elitist-LASSO [MK 09, MK & BT 09] regression:
sparsity inside the groups.
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Regression and mixed norms

We are interrested by the following optimization problem

& = argmin [y — ®a[3 + Al|ex]|]
[0 2

This problem is convex for p,q > 1 and strictly convex for p,q > 1.

Decoupling on the groups, not on coefficients
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Iterative Thresholding

Proximity operators

we suppose that ® is orthogonal. We denote by j = & Ty

LASSO solution min ||y — ®al|3 + Aljalx - .
g,m = ar8(Jg,m) (|7g,m| — A)" ; <
G-LASSO solution min ly — <Daf||% + A|e|2.1 =
« ,m = y ,m N~ =
¢ ¢ ||)’g||2
E-LASSO solution min [ly — ®a|3 + Ala|3
\ . ks
big,m = arg(Vg,m) <)7g,m| - 1+)\Lg||)7g||) | e e '
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Iterative Thresholding

(Relaxed) ISTA

o Let a® =0, L>

@ For t =0 to tax

Hd’ o] 0<pu<1, and tn, € N

altt1/2) — (0 4 > (y — qyy(t))/L
a(t+l) — S(a(t+l/2), )\/L)
L = @t (D (o (1) (1)

End For

with S a proximity operator (soft thresholding for ¢1).

Convergence proved by several authors
@ [Combettes & Wajs 05] forward-backward (proximity operators);
@ [Daubechies & al 04] Opial's fixed point theorem;
@ [Figuereido & Nowak 03] EM algorithm;

Accelerated version by [Nesterov 07], [Beck & Teboulle 09] (FISTA).
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Iterative Thresholding

@ Biased coefficients: large coefficients are shrinked [Gao, Bruce 97]

@ Lake of flexibility for structures: needs to define an adequate convex
penalty (not always simple)

Could we play directly on the thresholding step ?
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Iterative Thresholding

Thresholding rules

Definition [Antoniadis 07]

Q S(.;A) is an odd function. ( Sy (.; \) is used to denote the S(.; \)
restricted to R...)

@ S(.; ) is a shrinkage rule: 0 < S;(t;\) <t, Vt € R;.
@ S, is nondecreasing on R, and lim S(t;\) = +o0
t—+o00
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Iterative Thresholding

@ Soft [Donoho, Johnstone 94]

S(x;/\):x<1— |i>+

Hard Soft [Donoho, Johnstone 94]
S(X; )\) = X1|X|>)\
o NonNegativeGarrote (NNGarrote) [Gao 98]

S(X;A):x<1|x)\|2>+

Firm [Gao, Bruce 97]

0 if [x] <A\
(1

S(x; A1; A2) = % s x <A
X x| > X2

a—2
X if [ x| > a)\

e SCAD [Antoniadis, Fan 01] X(]. . ‘%\d)+ if |X| <2\
(21— 2>
S(x; A;a) = x(a-1-41) if 2X <|x| < aX
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Iterative Thresholding
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Iterative Thresholding

Properties of Thresholding rules

Definition: semi-convex fonction

A function f is said to be semi-convex, iff there exists ¢ such that

x = £(x) + S IxI1

is convex

We can associate a semi-convex penalty P(.; \), with ¢ <1 to any
thresholding rules. Moreover, flc is an upper-bound of §'(.; \).
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Iterative Thresholding

Convergence results

@ ISTA converges with any thresholding rules

@ Relaxed ista converges for 0 < p < 1 — ¢, where c is an
upper-bound of S'(.; \)

v
Examples

e NNGarrote (c = 1/2)

P(x; \) = )\? 4 asinh (|X|> 4= )\2|X—|
(i d) 2\ VX2 4 4)X2 + |x|

@ SCAD (c=a—1)

AX if x <\
P(x;A) = § Gox/2) ey oy < a)
a\ if x> a\
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Windowed Group-LASSO

Back to the model y = ®a + b, with ® orthonormal. Back to a simple
indexing, and for each index k, we define a neighborhood g(k).

Windowed G-Lasso [MK & BT 09], [K et al. 13]
®ooXK X X X
L O G I R S
+ ke
KoK IX K X
— X X | X X giket
ki
b’m|2 WOXOX| R X
m€g (k)
KooKk | XX
+ XX X X X
Vi [1—
1702 k)Hz SRR
2 ~ Ay FIGURE : WG-LASSO. Two overlapping

with y = ¢ y groups: neighborhood of ki and k.

Similar thresholding rules introduced by [Cai & Silvermanss 01] for wavelet
thresholding.
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Iterative Thresholding

A family of shrinkage operators

a = S(y) is given coordinatewise:

)\ +
Qk = Yk (1 - )
|yxl

o NNGarrote / Empirical Wiener

A +
o=y (1- )
( |yl

@ Windowed Group Lasso

) n
ok = Y (1 - T )
Vg ll2

@ Empirical Persistent Wiener [Siedenburg 13]

/\ +
k=9 [1- )
( ||)’g(k)||§

@ Lasso:
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Numerical illustration
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Tonal /transcient separation - 1

Excerpt of Mamavatu from Susheela Raman. Length of windows analysis
for MDCT:

e For tonal layer: 4096 samples (93 ms) (Left)

e For transicent layer: 128 samples (3 ms) (Right)
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Numerical illustration

Tonal /transcient separation - 2
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