Convex Optimization

Gabriel Peyré

Mathematica Coffees

Huawei-FSMP joint seminars /mathematical-coffees.github.io

Organized by: Mérouane Debbah & Gabriel Peyré

Geodesics

Neuro-imaging

Patches

Optimization

nces

Paris

Parallel/Stochastic

Alexandre Allauzen, Paris-Sud. Pierre Alliez, INRIA. Guillaume Charpiat, INRIA. Emilie Chouzenoux, Paris-Est.

Sparsity

Nicolas Courty, IRISA. Laurent Cohen, CNRS Dauphine. Marco Cuturi, ENSAE. Julie Delon, Paris 5. Fabian Pedregosa, INRIA. Julien Tierny, CNRS and P6. Robin Ryder, Paris-Dauphine. Gael Varoquaux, INRIA.

Jalal Fadili, ENSICaen. Alexandre Gramfort, INRIA. Matthieu Kowalski, Supelec. Jean-Marie Mirebeau, CNRS,P-Sud.

Examples

Optimization at the heart of:

- imaging sciences (denoising, inversion, ...)
- telecom (network design, routing, ...)
- machine learning (classification, clustering, \dots)

Examples

Optimization at the heart of:

- imaging sciences (denoising, inversion, ...)
- telecom (network design, routing, ...)
- machine learning (classification, clustering, \dots)

(Penalized) regression: $f(x) \stackrel{\text{def.}}{=} \|Ax - y\|^2 + \lambda R(x) \qquad A_{i,j} \stackrel{\text{def.}}{=} \varphi_j(t_i)$ $C \stackrel{\text{def.}}{=} \mathbb{R}^N$ regularization $R(x) = \begin{cases} \|x\|_2^2 = \sum_j |x_j|^2, \\ \|x\|_1 = \sum_j |x_j| \\ \dots \end{cases}$ $\to \text{Unconstraint optimization problem}$

 \rightarrow Unconstraint optimization problem.

Examples

Optimization at the heart of:

- imaging sciences (denoising, inversion, ...)
- telecom (network design, routing, ...)
- machine learning (classification, clustering, ...)

(Penalized) regression: $f(x) \stackrel{\text{def.}}{=} \|Ax - y\|^2 + \lambda R(x) \qquad A_{i,j} \stackrel{\text{def.}}{=} \varphi_j(t_i)$ $C \stackrel{ ext{def.}}{=} \mathbb{R}^N$ regularization $R(x) = \begin{cases} \|x\|_2^2 = \sum_j |x_j|^2, \\ \|x\|_1 = \sum_j |x_j| \end{cases}$

 \rightarrow Unconstraint optimization problem.

Min-cost flow problem

 $f(x) \stackrel{\text{def.}}{=} \sum_{i,j} w_{i,j} |x_{i,j}|$ $C \stackrel{\text{\tiny def.}}{=} \{x \; ; \; \operatorname{div}(x) = \delta_s - \delta_t \}$ \rightarrow Linear programming.

Convexity is nice: no local minimum, duality, guaranteed algorithms.

Non-smooth vs. Non-convex $\int_{C}^{f} \int_{C} \int_{C$

Convex Non-smooth

Convexity is nice: no local minimum, duality, guaranteed algorithms.

Many non-smooth problem are now routinely solved:

 \rightarrow interior points methods (small size + high-precision).

Non-smooth vs. Non-convex

Convexity is nice: no local minimum, duality, guaranteed algorithms.

Many non-smooth problem are now routinely solved:

- \rightarrow interior points methods (small size + high-precision).
- \rightarrow first order schemes (gradient, proximal, Frank-Wolfe).

Non-smooth vs. Non-convex

Convexity is nice: no local minimum, duality, guaranteed algorithms.

Many non-smooth problem are now routinely solved:

- \rightarrow interior points methods (small size + high-precision).
- \rightarrow first order schemes (gradient, proximal, Frank-Wolfe).
- \rightarrow structured problems (sparse, low-rank, etc.)

Non-convexity is hard: convexification is sometime possible. \rightarrow sparsity with ℓ^1 , low-rank with nuclear norm.

 \rightarrow Lasserre SDP hierarchy (small size).

What's next

ovter

learn Jupyter

python

Alexandre Gramfort: sparsity, applications in ML/imaging.

