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Examples

Optimization at the heart of: m{gn {f(z); zeC}

— imaging sciences (denoising, inversion, ... ) objective constraints
— telecom (network design, routing, ... )

— machine learning (classification, clustering, ... )

ulanger et,al. 2014]
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Min-cost flow problem

f(x) = Zz] Wad
C = {z; div(z) = §, — 6}

6.9

— Linear programming.
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Convexity s nice: no local minimum, duality, guaranteed algorithms.

Many non-smooth problem are now routinely solved:

— interior points methods (small size + high-precision).

— first order schemes (gradient, proximal, Frank-Wolfe).
— structured problems (sparse, low-rank, etc.)

Non-convexity is hard: convexification is sometime possible.
— sparsity with ¢!, low-rank with nuclear norm.

— Lasserre SDP hierarchy (small size).



What’s next

Alexandre Gramfort: sparsity, applications in ML /imaging.
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