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data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree
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FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.
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varying the azimuth φ during the exposure time and can be
modeled by the following expression:
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where f ðzÞ is the density of fluorophores in the medium con-
volved by the emission point spread function and ρð · Þ represents
the laser beam profile of divergence Ω. The function Iðz; α;φÞ
describes the intensity of the electric field as a function of the
depth z, the incidence angle α, and the azimuth φ: For an in-
cidence angle α greater than the critical angle, an exponentially
decreasing component appears whose characteristic penetration
depth dðαÞ can be expressed as a function of the wavelength λ, the
refractive index of the glass ni, and the refractive index of the
medium nt as dðαÞ= λ=4π ðn2i sin

2 α+ n2t Þ
−1=2. A more realistic

model would take into account a multilayer dielectric material
(24). However, for small enough depth (z< λ=2), the TIRF exci-
tation intensity can be approximated by a simple exponentially
decaying function (25). For a given angle θ, we can average
the contributions of the two polarization components when the
beam describes a full circle. Finally, by considering a finite set of
incident angles θ and depth z, we can discretize the problem and
obtain the following linear system of equations g=Hf , where H
is the matrix associated to the operator involved in the image
formation (Fig. S3B).
To validate the proposedmodel, a test sample has been designed

containing fluorescent beads located at different heights as pre-
viously described (17). A multiangle TIRF and aWF image stacks
of the sample have been acquired (Fig. 2B), and a parametric
model of the beads viewed through the image formation operator
(SI Imaging Model and Reconstruction) has been fitted to the
evolution of the intensity versus the incident TIRF angle (21). It
is worth stressing that the location of the beads in WF are relative
to the objective, whereas in TIRF the estimated depth is related
to the distance to the glass coverslip. As depicted on Fig. 2C
and Movie S2, the adjusted model is in good agreement with
the measured intensity profiles. Indeed, from these parameter
adjustments, the location of the beads can be estimated and the

slope of the glass slide recovered (Fig. 2D), the latter falling within
the confidence interval deducted from the accuracy of the mea-
surement of the different characteristic dimensions of the sample.
Finally, from the dispersion of the estimated depth around the
average slope (Fig. 2D), we can conclude that the localization
precision obtained with this approach is higher than the corre-
sponding precision given by estimating the location of the beads in
the WF image stack as already mentioned (17).
Estimating the 3D density of fluorophores convolved by the

emission point spread function then would simply boil down to
inverting the linear system. Some care has to be taken when
inverting such system, as the inverse problem is at best badly con-
ditioned. Nevertheless, constraints can be imposed to the solution
such as positivity, and, in the case of time-lapse acquisitions, a
multiframe regularization can be used in addition to the spatial and
temporal regularization smoothness to solve the reconstruction
problem. Moreover, to be effective, such a positivity constraint
requires a correct knowledge of the background level. As a conse-
quence, for each multiangle image stack, a background image is
obtained by driving the beam out of the objective. Given that
several convex constraints have to be satisfied at the same time, we
propose to rely on a flavor of the PPXA algorithm (26) to estimate
the tridimensional density of fluorophores (Fig. S4).More detailed
information on how noise, object depth, and the required number
of angles can be taken into account is discussed in SI ImagingModel
and Reconstruction and Fig. S5. Finally, to take into account the
variations of the medium index, we select an effective index within
a predefined range by minimizing the reconstruction error at each
pixel under a spatial smoothness constraint (Fig. S6). It is worth
noting that the computation time for the reconstruction on 10
planes from a stack 512 × 512 images corresponding to 21 in-
cidence angles ranges from 1 to 5 min depending on the number
of iterations.

Imaging in Vitro and in Vivo Actin Assembly. The proposed multi-
angle TIRF image reconstruction approach was then tested on
complex samples such as actin network architectures for which
spatial resolution and dynamics remain an issue. We first chal-
lenged the spatial organization of actin nucleation geometry
using an in vitro assay based on micropatterning method (27).
In this context, the micropatterns promote actin assembly and
constrain the actin organization. This system, giving rise to specific
architectures (parallel or antiparallel bundles and networks)
mimics equivalent structures observed in cells. Three-dimensional
reconstruction of multiangle TIRFM stacks clearly highlights the
fact that structures assembled outside of the patterned areas ex-
tend in depth and are not restricted to the plane of the glass
coverslip. This is displayed both in a color-coded depth visuali-
zation (Fig. 3A), as well as in the thumbnails (Fig. 3A, Right)
corresponding to four equally spaced slices, taken among 10
reconstructed planes. We observe radially expanding bundles lo-
cated in the first 100-nm range and a second set of filaments lo-
cated in the 100- to 300-nm range above. The resulting network is
not well constrained, generating an unorganized architecture;
therefore, bundle crossings appear (Fig. 3A). In contrast, the net-
work induced by a circular pattern appears highly organized (Fig.
3B). The results obtained with this approach confirm and un-
derscore previously published data (27). Indeed, the gain in axial
resolution demonstrates unambiguously that the actin structure
arising from the circular pattern is confined next to the patterned
coverslip (mainly within the first 50 nm). The analysis presented
here emphasizes the structural heterogeneity of actin organization
and extent of deformation observed toward the center as a conse-
quence of growing actin bundles encountering each other. This
allows the characterization of sites of active force-induced de-
formation driven by actin assembly.
In a cellular context, depending on the acquisition parameters,

an axial resolution of 50–100 nm on average can be reached, over
up to 800 nm in depth. This is illustrated in Fig. 3C on LifeAct-
mCherry–expressing RPE1 cells, where actin architecture can be
restored from an image stack corresponding to 21 incidence
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Fig. 2. Experimental validation of the multiangle TIRF model. (A) Schema
of the system designed to create a slope of fluorescent beads. (B) Overlay
of the maximum intensity projection of image stack acquired with WF and
TIRF illumination. (Scale bar: 5 μm.) The evolution of the intensity versus the
illumination angle θ of two selected beads are plotted in C with the corre-
sponding fitting theoretical model (continuous line) for their estimated
depth (respectively 10 and 89 nm). (D) Depth of all of the beads estimated by
fitting the theoretical TIRF model (in red) and the depth of the same beads
estimated by fitting a Gaussian model in the WF image stack (in green).
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where f ðzÞ is the density of fluorophores in the medium con-
volved by the emission point spread function and ρð · Þ represents
the laser beam profile of divergence Ω. The function Iðz; α;φÞ
describes the intensity of the electric field as a function of the
depth z, the incidence angle α, and the azimuth φ: For an in-
cidence angle α greater than the critical angle, an exponentially
decreasing component appears whose characteristic penetration
depth dðαÞ can be expressed as a function of the wavelength λ, the
refractive index of the glass ni, and the refractive index of the
medium nt as dðαÞ= λ=4π ðn2i sin

2 α+ n2t Þ
−1=2. A more realistic

model would take into account a multilayer dielectric material
(24). However, for small enough depth (z< λ=2), the TIRF exci-
tation intensity can be approximated by a simple exponentially
decaying function (25). For a given angle θ, we can average
the contributions of the two polarization components when the
beam describes a full circle. Finally, by considering a finite set of
incident angles θ and depth z, we can discretize the problem and
obtain the following linear system of equations g=Hf , where H
is the matrix associated to the operator involved in the image
formation (Fig. S3B).
To validate the proposedmodel, a test sample has been designed

containing fluorescent beads located at different heights as pre-
viously described (17). A multiangle TIRF and aWF image stacks
of the sample have been acquired (Fig. 2B), and a parametric
model of the beads viewed through the image formation operator
(SI Imaging Model and Reconstruction) has been fitted to the
evolution of the intensity versus the incident TIRF angle (21). It
is worth stressing that the location of the beads in WF are relative
to the objective, whereas in TIRF the estimated depth is related
to the distance to the glass coverslip. As depicted on Fig. 2C
and Movie S2, the adjusted model is in good agreement with
the measured intensity profiles. Indeed, from these parameter
adjustments, the location of the beads can be estimated and the

slope of the glass slide recovered (Fig. 2D), the latter falling within
the confidence interval deducted from the accuracy of the mea-
surement of the different characteristic dimensions of the sample.
Finally, from the dispersion of the estimated depth around the
average slope (Fig. 2D), we can conclude that the localization
precision obtained with this approach is higher than the corre-
sponding precision given by estimating the location of the beads in
the WF image stack as already mentioned (17).
Estimating the 3D density of fluorophores convolved by the

emission point spread function then would simply boil down to
inverting the linear system. Some care has to be taken when
inverting such system, as the inverse problem is at best badly con-
ditioned. Nevertheless, constraints can be imposed to the solution
such as positivity, and, in the case of time-lapse acquisitions, a
multiframe regularization can be used in addition to the spatial and
temporal regularization smoothness to solve the reconstruction
problem. Moreover, to be effective, such a positivity constraint
requires a correct knowledge of the background level. As a conse-
quence, for each multiangle image stack, a background image is
obtained by driving the beam out of the objective. Given that
several convex constraints have to be satisfied at the same time, we
propose to rely on a flavor of the PPXA algorithm (26) to estimate
the tridimensional density of fluorophores (Fig. S4).More detailed
information on how noise, object depth, and the required number
of angles can be taken into account is discussed in SI ImagingModel
and Reconstruction and Fig. S5. Finally, to take into account the
variations of the medium index, we select an effective index within
a predefined range by minimizing the reconstruction error at each
pixel under a spatial smoothness constraint (Fig. S6). It is worth
noting that the computation time for the reconstruction on 10
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angle TIRF image reconstruction approach was then tested on
complex samples such as actin network architectures for which
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using an in vitro assay based on micropatterning method (27).
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mimics equivalent structures observed in cells. Three-dimensional
reconstruction of multiangle TIRFM stacks clearly highlights the
fact that structures assembled outside of the patterned areas ex-
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corresponding to four equally spaced slices, taken among 10
reconstructed planes. We observe radially expanding bundles lo-
cated in the first 100-nm range and a second set of filaments lo-
cated in the 100- to 300-nm range above. The resulting network is
not well constrained, generating an unorganized architecture;
therefore, bundle crossings appear (Fig. 3A). In contrast, the net-
work induced by a circular pattern appears highly organized (Fig.
3B). The results obtained with this approach confirm and un-
derscore previously published data (27). Indeed, the gain in axial
resolution demonstrates unambiguously that the actin structure
arising from the circular pattern is confined next to the patterned
coverslip (mainly within the first 50 nm). The analysis presented
here emphasizes the structural heterogeneity of actin organization
and extent of deformation observed toward the center as a conse-
quence of growing actin bundles encountering each other. This
allows the characterization of sites of active force-induced de-
formation driven by actin assembly.
In a cellular context, depending on the acquisition parameters,

an axial resolution of 50–100 nm on average can be reached, over
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Fig. 2. Experimental validation of the multiangle TIRF model. (A) Schema
of the system designed to create a slope of fluorescent beads. (B) Overlay
of the maximum intensity projection of image stack acquired with WF and
TIRF illumination. (Scale bar: 5 μm.) The evolution of the intensity versus the
illumination angle θ of two selected beads are plotted in C with the corre-
sponding fitting theoretical model (continuous line) for their estimated
depth (respectively 10 and 89 nm). (D) Depth of all of the beads estimated by
fitting the theoretical TIRF model (in red) and the depth of the same beads
estimated by fitting a Gaussian model in the WF image stack (in green).
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where f ðzÞ is the density of fluorophores in the medium con-
volved by the emission point spread function and ρð · Þ represents
the laser beam profile of divergence Ω. The function Iðz; α;φÞ
describes the intensity of the electric field as a function of the
depth z, the incidence angle α, and the azimuth φ: For an in-
cidence angle α greater than the critical angle, an exponentially
decreasing component appears whose characteristic penetration
depth dðαÞ can be expressed as a function of the wavelength λ, the
refractive index of the glass ni, and the refractive index of the
medium nt as dðαÞ= λ=4π ðn2i sin
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model would take into account a multilayer dielectric material
(24). However, for small enough depth (z< λ=2), the TIRF exci-
tation intensity can be approximated by a simple exponentially
decaying function (25). For a given angle θ, we can average
the contributions of the two polarization components when the
beam describes a full circle. Finally, by considering a finite set of
incident angles θ and depth z, we can discretize the problem and
obtain the following linear system of equations g=Hf , where H
is the matrix associated to the operator involved in the image
formation (Fig. S3B).
To validate the proposedmodel, a test sample has been designed

containing fluorescent beads located at different heights as pre-
viously described (17). A multiangle TIRF and aWF image stacks
of the sample have been acquired (Fig. 2B), and a parametric
model of the beads viewed through the image formation operator
(SI Imaging Model and Reconstruction) has been fitted to the
evolution of the intensity versus the incident TIRF angle (21). It
is worth stressing that the location of the beads in WF are relative
to the objective, whereas in TIRF the estimated depth is related
to the distance to the glass coverslip. As depicted on Fig. 2C
and Movie S2, the adjusted model is in good agreement with
the measured intensity profiles. Indeed, from these parameter
adjustments, the location of the beads can be estimated and the

slope of the glass slide recovered (Fig. 2D), the latter falling within
the confidence interval deducted from the accuracy of the mea-
surement of the different characteristic dimensions of the sample.
Finally, from the dispersion of the estimated depth around the
average slope (Fig. 2D), we can conclude that the localization
precision obtained with this approach is higher than the corre-
sponding precision given by estimating the location of the beads in
the WF image stack as already mentioned (17).
Estimating the 3D density of fluorophores convolved by the

emission point spread function then would simply boil down to
inverting the linear system. Some care has to be taken when
inverting such system, as the inverse problem is at best badly con-
ditioned. Nevertheless, constraints can be imposed to the solution
such as positivity, and, in the case of time-lapse acquisitions, a
multiframe regularization can be used in addition to the spatial and
temporal regularization smoothness to solve the reconstruction
problem. Moreover, to be effective, such a positivity constraint
requires a correct knowledge of the background level. As a conse-
quence, for each multiangle image stack, a background image is
obtained by driving the beam out of the objective. Given that
several convex constraints have to be satisfied at the same time, we
propose to rely on a flavor of the PPXA algorithm (26) to estimate
the tridimensional density of fluorophores (Fig. S4).More detailed
information on how noise, object depth, and the required number
of angles can be taken into account is discussed in SI ImagingModel
and Reconstruction and Fig. S5. Finally, to take into account the
variations of the medium index, we select an effective index within
a predefined range by minimizing the reconstruction error at each
pixel under a spatial smoothness constraint (Fig. S6). It is worth
noting that the computation time for the reconstruction on 10
planes from a stack 512 × 512 images corresponding to 21 in-
cidence angles ranges from 1 to 5 min depending on the number
of iterations.

Imaging in Vitro and in Vivo Actin Assembly. The proposed multi-
angle TIRF image reconstruction approach was then tested on
complex samples such as actin network architectures for which
spatial resolution and dynamics remain an issue. We first chal-
lenged the spatial organization of actin nucleation geometry
using an in vitro assay based on micropatterning method (27).
In this context, the micropatterns promote actin assembly and
constrain the actin organization. This system, giving rise to specific
architectures (parallel or antiparallel bundles and networks)
mimics equivalent structures observed in cells. Three-dimensional
reconstruction of multiangle TIRFM stacks clearly highlights the
fact that structures assembled outside of the patterned areas ex-
tend in depth and are not restricted to the plane of the glass
coverslip. This is displayed both in a color-coded depth visuali-
zation (Fig. 3A), as well as in the thumbnails (Fig. 3A, Right)
corresponding to four equally spaced slices, taken among 10
reconstructed planes. We observe radially expanding bundles lo-
cated in the first 100-nm range and a second set of filaments lo-
cated in the 100- to 300-nm range above. The resulting network is
not well constrained, generating an unorganized architecture;
therefore, bundle crossings appear (Fig. 3A). In contrast, the net-
work induced by a circular pattern appears highly organized (Fig.
3B). The results obtained with this approach confirm and un-
derscore previously published data (27). Indeed, the gain in axial
resolution demonstrates unambiguously that the actin structure
arising from the circular pattern is confined next to the patterned
coverslip (mainly within the first 50 nm). The analysis presented
here emphasizes the structural heterogeneity of actin organization
and extent of deformation observed toward the center as a conse-
quence of growing actin bundles encountering each other. This
allows the characterization of sites of active force-induced de-
formation driven by actin assembly.
In a cellular context, depending on the acquisition parameters,

an axial resolution of 50–100 nm on average can be reached, over
up to 800 nm in depth. This is illustrated in Fig. 3C on LifeAct-
mCherry–expressing RPE1 cells, where actin architecture can be
restored from an image stack corresponding to 21 incidence
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Fig. 2. Experimental validation of the multiangle TIRF model. (A) Schema
of the system designed to create a slope of fluorescent beads. (B) Overlay
of the maximum intensity projection of image stack acquired with WF and
TIRF illumination. (Scale bar: 5 μm.) The evolution of the intensity versus the
illumination angle θ of two selected beads are plotted in C with the corre-
sponding fitting theoretical model (continuous line) for their estimated
depth (respectively 10 and 89 nm). (D) Depth of all of the beads estimated by
fitting the theoretical TIRF model (in red) and the depth of the same beads
estimated by fitting a Gaussian model in the WF image stack (in green).
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Convexity is nice: no local minimum, duality, guaranteed algorithms.
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Examples of representation of an audio signal
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Figure : Time-frequency images. Top: signal, bottom-left: representation adapted to
transceents. Bottom-right, representation adapted to tonals.

The characteristics of interest are rarely directly observable.
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Application to tonal/transicent separation Simulations Audio declipping
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