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Overview

Overview
I What’s a neural net?
I Architectures
I Natural gradient
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What’s a neural net?

What’s a neural net?
A classical machine learning tool

I Task to solve: explained with pairs (examples, expected answer)
I Search for best function: example ↦→ answer
I Generalization power: regularizer, or restricted space of functions
I e.g.: linear functions, polynomials with degree 6 3, mixture of Gaussians...
I =⇒ estimate the parameters of the best function in that space

Neural networks
I very varied space of functions (the more layers, the more varied)

I parameters: connection weights wij between neurons
I parameters: 𝜃 = (wij )i,j : many many many (millions)
I meta-parameters: architecture, type of neurons...
I very big space (f𝜃)𝜃 =⇒ difficult optimization
I gradient descent techniques: d𝜃

dt = −∇𝜃 C(𝜃)
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Architectures

Architectures

Influence of the architecture
I We’re searching for a function f𝜃 optimizing some criterion C(f𝜃).
I Optimization in the space of parameters: 𝜃 ∈ 𝒫𝒜

=⇒ search space of functions ℱ𝒜 = {f𝜃, for 𝜃 ∈ 𝒫𝒜}: depends on the
architecture 𝒜

I more likely functions to be found when initializing with random coefficients
=⇒ architecture 𝒜 = prior on functions
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Simplest architectures

Simplest architectures

Theorem: one layer can approximate any function if wide enough
In practice: many many parameters
=⇒ difficult to optimize, search space too big

Hierarchical networks: several layers
Aim: develop a series of features, from low-level (close to data, such as values)
to high-level (detected objects).

Fully connected network
Issue: many neurons

=⇒ how to reduce the number of required parameters?
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Simplest architectures

Standard architectures

Exploit desired invariances

I E.g.: in computer vision, to process images, or in text analysis, to process
text: precise location within the data is not relevant

I all data (all locations) should be processed “the same way”, and the
immediate spatial neighborhood is more important

I =⇒ translational invariance
=⇒ convolutional networks

I few parameters, easy to optimize, closer to what one would do intuitively
I Note: several features (filters) for each location: 3D tensors of neurons
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Examples

Examples

Classification of images
I dataset of skin pictures, from a hospital
I classes: operate / don’t operate

I difficulties: small part of the image, detection, white balance...
I work being done by Etienne Desbois (internship)
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Impressive results in computer vision

Impressive results in computer vision:
Deeper architectures

Quantity of results in the last 4 years

Image classification
I ImageNet dataset: 1000 classes
I classification accuracy > 0.6 while many similar classes
I with (very) deep networks (15, 20... or 100 layers!)
I here: VGG and Resnet
I Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren Jian Sun
Microsoft Research
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Impressive results in computer vision

Croatian Fish Dataset: Fine-
grained classification of fish
species in their natural habitat

Jonas Jaeger, Marcel Simon,
Joachim Denzler, Viviane
Wolff, Klaus Fricke-Neuderth,
Claudia Kruschel
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Impressive results in computer vision

Texture generation

Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks
Leon A. Gatys, Alexander S. Ecker, Matthias Bethge
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Impressive results in computer vision

Neural net as feature factory

A feature factory
I set of hierarchical features
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Impressive results in computer vision

Neural net as feature factory

A feature factory
I set of hierarchical features
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Impressive results in computer vision

Style transfer

A Neural Algorithm of Artistic Style
Leon A. Gatys, Alexander S. Ecker,
Matthias Bethge
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Recurrent networks

Recurrent networks (RNN)
Recurrent networks as dynamical systems

I recurrent networks (e.g.: LSTM, GRU)
I compute step by step with new inputs at each time t
I can be seen as a feedforward net with identical weights through time

inputs

x
t=1

x x x
t=2 t=3 t=4

outputs

t=1
y y y y

t=2 t=3 t=4

x

y

t

t

recurrentfeedforward

I several time scale dependencies? connect neurons accross various durations
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Unsupervised approaches

Unsupervised approaches
Image generation

Unsupervised representation learning with deep convolutional generative adversarial networks
Alec Radford, Luke Metz, Soumith Chintala (Facebook AI Research)
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Unsupervised approaches

Image generation : “face arithmetics”

Unsupervised representation learning with deep convolutional generative adversarial networks
Alec Radford, Luke Metz, Soumith Chintala (Facebook AI Research)
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Unsupervised approaches

Image generation : chairs arithmetics...

Learning to Generate Chairs, Tables and Cars with Convolutional Networks
Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Unsupervised approaches

Chair interpolation

Learning to Generate Chairs, Tables and
Cars with Convolutional Networks

Alexey Dosovitskiy, Jost Tobias Springen-
berg, Maxim Tatarchenko, Thomas Brox
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Impressive results in reinforcement learning

Meanwhile, in Reinforcement Learning...

Several neural nets used (one to copy human experts), as parts of the main algorithm
Also: Atari games (no human knowledge included), etc.
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Impressive results in language processing

And also

I Natural Language Processing
I Answering questions about text

Memory networks
Jason Weston, Sumit Chopra & Antoine Bordes (Facebook AI Research)
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Problems

Problems and research tracks
Big data, scaling

I number of examples needed (huge)
I ML viewpoint: number of parameters =⇒ overfit
I input dimension: big (for images) =⇒ spurious correlations
I memory size (RAM), GPU/CPU consumption
I can’t store history during learning

Optimization and meta-parameters
I initialization, optimization, sensitivity to adversarial noise
I for each new task, ask experts to build a new architecture
I and optimize over meta-parameters (precise architecure, type of neuron...)

Lack of theory
I No theoretical guarantee (that training a network will work)
I in practice: small networks (3 layers) are easy to learn and sufficient to provide

descriptors for many tasks
Learning a program

I no variable or memory in the network... how to learn a program?
I how to reuse a neural network as part of another task?
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Problems

Problems and research tracks
Big data, scaling

I number of examples needed (huge)
I ML viewpoint: number of parameters =⇒ overfit
I input dimension: big (for images) =⇒ spurious correlations
I memory size (RAM), GPU/CPU consumption
I can’t store history during learning =⇒ NoBackTrack

Optimization and meta-parameters
I initialization, optimization, sensitivity to adversarial noise
I for each new task, ask experts to build a new architecture =⇒ learn structure
I and optimize over meta-parameters (precise architecure, type of neuron...)

Lack of theory
I No theoretical guarantee (that training a network will work)
I in practice: small networks (3 layers) are easy to learn and sufficient to provide

descriptors for many tasks
Learning a program =⇒ my long-term goal

I no variable or memory in the network... how to learn a program?
I how to reuse a neural network as part of another task?
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Learn the structure

Learning the structure of a network
Architecture design issues

I Impressive results in computer vision, but large networks hard to optimize
I many different architectures are tried
I many meta-parameters to tune (type of neurons, layer type and size, stride, ...)
I a lot of time lost

Elements of design
I convolutional networks: suited for images (and text); exploit spatial information,

reduce the number of parameters, invariance to translation
I recently, slightly more flexible architectures tried (skip layers when needed)
I more complex architectures too... (pseudo-recursive structures)
I stochastic architectures: e.g., drop-out (neurons deleted half of the time during

training)
I stochastic weights (drawn according to Gaussian distribution, parameter =

mean)
I neural networks are highly redundant/robust in the sense that compressing their

weights by 90% might not affect them much
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Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint

I Kolmogorov complexity: length of the shortest program which can generate the
data

I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis
I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data

I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis
I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data

I here, we see neural networks as programs and try to exploit any form of
redundancy

I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis
I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy

I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis
I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?

I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis
I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights

I =⇒ self-similarity prior on neural networks
=⇒ emerging structures during training

I simplest version: a block = one edge or one neuron =⇒ Bernouilli process
=⇒ Pierre Wolinski PhD thesis

I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training

I simplest version: a block = one edge or one neuron =⇒ Bernouilli process
=⇒ Pierre Wolinski PhD thesis

I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis

I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Learn the structure

Learning the structure of a network (II)

(skippable)

An Information Theory viewpoint
I Kolmogorov complexity: length of the shortest program which can generate the

data
I in practice: search for the simplest model suited to the data
I here, we see neural networks as programs and try to exploit any form of

redundancy
I What is the equivalent of functions in neural networks?
I =⇒ repeated blocks of neurons with similar weights
I =⇒ self-similarity prior on neural networks

=⇒ emerging structures during training
I simplest version: a block = one edge or one neuron =⇒ Bernouilli process

=⇒ Pierre Wolinski PhD thesis
I noise during training ⇐⇒ Jacobian regularization

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Bonus

Bonus

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

Bonus

Architectures bonus: unsupervised learning

I generative models: auto-encoders
I adversarial approaches (DANN, GAN): to help improve the

generated distribution / in order not to have to specify the task
explicitely!
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Examples

Examples or recurrent networks as PDEs
Semantic segmentation of images

I dataset of satellite images
I classes: road, building, grass, trees, lake, swimming pool...
I difficulties: very small objects, need for precise boundaries
I refine available segmentation with a Partial Differential Equation (PDE)
I learn it with a recurrent network
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Bonus examples

Examples or recurrent networks as PDEs
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Bonus examples

Examples or recurrent networks as PDEs

I joint work with Emmanuel Maggiori & Yuliya Tarabalka (INRIA
Sophia-Antipolis)

G. Charpiat TAU
Neural Networks



Introduction What’s a neural net? Architectures Problems and research tracks Bonus

History

History
Perceptron [Rosenblatt, 1957]

inputs

function
linear

*w1

*w2

output

non−linear

function

Σ
i

x

x

x
3

2

1

I only one layer
I = linear classifier
I inspired from brain and Hebb’s work
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History

History
Perceptron [Rosenblatt, 1957]

inputs

function
linear

*w1

*w2

output

non−linear

function

Σ
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3

2

1

Multi-layer perceptron (MLP)
I Backpropagation (derivation chain rule)

Book Perceptrons [Minsky & Papert, 1969]
I Theorem: A perceptron (single layer) cannot learn XOR
I =⇒ break in research on neural networks

End of 80’s, 90’s, 2000: resurgence
I in computer vision: LeCun, Hinton, Bengio, Schmidhuber...
I but no impact yet in the community (hand-made descriptors)

2012: neural nets win great challenges in vision (image classification)
I "Deep Learning"

Since then: explosion of results and popularity
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