Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus

Introduction to Neural Networks: Which Architectures, for which Purposes

Guillaume Charpiat

TAU team, LRI, Paris-Sud / INRIA Saclay

Mathematical Coffees, Huawei 9th of May, 2017

TAU

Introduction •	What's a neural net? O	Architectures	Problems and research tracks	Bonus
Overview				

Overview

- What's a neural net?
- Architectures
- Natural gradient

Introduction	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

A classical machine learning tool

<ロ> < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0</p>

G. Charpiat Neural Networks TAU

Introduction	What's a neural net? ●	Architectures	Problems and research tracks	Bonus 000000
What's a neural ne	t?			

A classical machine learning tool

Task to solve: explained with pairs (examples, expected answer)

Introduction	What's a neural net? ●	Architectures	Problems and research tracks	Bonus 000000
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- \blacktriangleright \implies estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- \blacktriangleright \implies estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- \blacktriangleright \implies estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus
What's a neural ne	t?			

- Task to solve: explained with pairs (examples, expected answer)
- ▶ Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus	
What's a neural net?					

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

Neural networks

very varied space of functions (the more layers, the more varied)

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus	
What's a neural net?					

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

Neural networks

- very varied space of functions (the more layers, the more varied)
- parameters: connection weights w_{ij} between neurons

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus	
What's a neural net?					

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

- very varied space of functions (the more layers, the more varied)
- parameters: connection weights w_{ij} between neurons
- **>** parameters: $\theta = (w_{ij})_{i,j}$: many many many (millions)

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus	
What's a neural net?					

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- \blacktriangleright \implies estimate the parameters of the best function in that space

- very varied space of functions (the more layers, the more varied)
- parameters: connection weights w_{ij} between neurons
- ▶ parameters: $\theta = (w_{ij})_{i,j}$: many many many (millions)
- meta-parameters: architecture, type of neurons...

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus	
What's a neural net?					

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- ▶ Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

- very varied space of functions (the more layers, the more varied)
- parameters: connection weights w_{ij} between neurons
- **>** parameters: $\theta = (w_{ij})_{i,j}$: many many many (millions)
- meta-parameters: architecture, type of neurons...
- very big space $(f_{\theta})_{\theta} \implies$ difficult optimization

Introduction O	What's a neural net? ●	Architectures	Problems and research tracks	Bonus	
What's a neural net?					

A classical machine learning tool

- Task to solve: explained with pairs (examples, expected answer)
- ▶ Search for best function: example \mapsto answer
- Generalization power: regularizer, or restricted space of functions
- e.g.: linear functions, polynomials with degree \leq 3, mixture of Gaussians...
- $\blacktriangleright \implies$ estimate the parameters of the best function in that space

- very varied space of functions (the more layers, the more varied)
- parameters: connection weights w_{ij} between neurons
- **>** parameters: $\theta = (w_{ij})_{i,j}$: many many many (millions)
- meta-parameters: architecture, type of neurons...
- very big space $(f_{\theta})_{\theta} \Longrightarrow$ difficult optimization
- gradient descent techniques: $\frac{d\theta}{dt} = -\nabla_{\theta} C(\theta)$

Introduction O	What's a neural net? O	Architectures OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Problems and research tracks	Bonus 000000
Architectures				

Architectures

Influence of the architecture

- We're searching for a function f_{θ} optimizing some criterion $C(f_{\theta})$.
- Optimization in the space of parameters: θ ∈ P_A
 ⇒ search space of functions F_A = {f_θ, for θ ∈ P_A}: depends on the architecture A
- more likely functions to be found when initializing with random coefficients \implies architecture $\mathcal{A} =$ prior on functions

Simplest architectures

Theorem: one layer can approximate any function if wide enough In practice: many many parameters

 \implies difficult to optimize, search space too big

Hierarchical networks: several layers Aim: develop a series of features, from low-level (close to data, such as values) to high-level (detected objects).

Fully connected network Issue: many neurons

 \implies how to reduce the number of required parameters?

Standard architectures

Exploit desired invariances

- E.g.: in computer vision, to process images, or in text analysis, to process text: precise location within the data is not relevant
- all data (all locations) should be processed "the same way", and the immediate spatial neighborhood is more important
- $\blacktriangleright \implies$ translational invariance
 - \implies convolutional networks
- ▶ few parameters, easy to optimize, closer to what one would do intuitively
- ► Note: several features (filters) for each location: 3D tensors of neurons

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 000000
Examples				

Examples

Classification of images

- dataset of skin pictures, from a hospital
- classes: operate / don't operate

・ロット語・・照・・ 「「・・」

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 000000
Examples				

Examples

Classification of images

- dataset of skin pictures, from a hospital
- classes: operate / don't operate
- difficulties: small part of the image, detection, white balance...
- work being done by Etienne Desbois (internship)

Introduction		What's a neural net?		Architectures	Problems and research tracks	Bonus
				000000000000000000000000000000000000000		

Impressive results in computer vision

Impressive results in computer vision: Deeper architectures

Quantity of results in the last 4 years

Image classification

- ImageNet dataset: 1000 classes
- classification accuracy > 0.6 while many similar classes
- with (very) deep networks (15, 20... or 100 layers!)
- here: VGG and Resnet
- Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren Jian Sun Microsoft Research

Introduction What's a neural net?

Architectures

Problems and research tracks

Bonus

Impressive results in computer vision

Croatian Fish Dataset: Finegrained classification of fish species in their natural habitat

Jonas Jaeger, Marcel Simon, Joachim Denzler, Viviane Wolff, Klaus Fricke-Neuderth, Claudia Kruschel

G. Charpiat Neural Networks TAU

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus		
		000000000000000000				
Impressive results in computer vision						

Texture generation

Neural net as feature factory

A feature factory

set of hierarchical features

G. Charpiat Neural Networks TAU

Neural net as feature factory

A feature factory

set of hierarchical features

Neural net as feature factory

A feature factory

set of hierarchical features

G. Charpiat Neural Networks TAU

Introduction

What's a neural net?

Architectures

Problems and research tracks

Bonus

Impressive results in computer vision

Style transfer

A Neural Algorithm of Artistic Style Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
		000000000000000000		
Recurrent network	5			

Recurrent networks (RNN)

Recurrent networks as dynamical systems

- recurrent networks (e.g.: LSTM, GRU)
- compute step by step with new inputs at each time t
- can be seen as a feedforward net with identical weights through time

TAU

Neural Networks

G. Charpiat

Unsupervised approaches

Unsupervised approaches

Image generation

Unsupervised representation learning with deep convolutional generative adversarial networks Alec Radford, Luke Metz, Soumith Chintala (Facebook Al Research)

G. Charpiat Neural Networks TAU

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
		00000000000000000		
Unsupervised appro	aches			

Image generation

Unsupervised representation learning with deep convolutional generative adversarial networks Alec Radford, Luke Metz, Soumith Chintala (Facebook AI Research)

G. Charpiat Neural Networks TAU

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus
Unsupervised appro	oaches			

Image generation : "face arithmetics"

Unsupervised representation learning with deep convolutional generative adversarial networks Alec Radford, Luke Metz, Soumith Chintala (Facebook Al Research)

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
		000000000000000000000000000000000000000		
I have a second second second	a se a la calencia			

Unsupervised approaches

Image generation : chairs arithmetics...

Learning to Generate Chairs, Tables and Cars with Convolutional Networks Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox

G. Charpiat Neural Networks TAU

Introduction

What's a neural net?

Architectures

Problems and research tracks

Bonus

Unsupervised approaches

Chair interpolation

Learning to Generate Chairs, Tables and Cars with Convolutional Networks

Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox

G. Charpiat Neural Networks TAU

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
		000000000000000000000000000000000000000	000	000000
Impressive results	in reinforcement learning			

Meanwhile, in Reinforcement Learning...

Several neural nets used (one to copy human experts), as parts of the main algorithm Also: Atari games (no human knowledge included), etc.

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus
Impressive results i	n language processing			

And also

- Natural Language Processing
- Answering questions about text

Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the ring. Bilbo went back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died. Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End. Where is the ring? A: Mount-Doom Where is Bilbo now? A: Grey-havens Where is Frodo now? A: Shire

Memory networks Jason Weston, Sumit Chopra & Antoine Bordes (Facebook Al Research)

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
O	O		●○○	000000
Problems				

Big data, scaling

- number of examples needed (huge)
- ML viewpoint: number of parameters ⇒ overfit
- ▶ input dimension: big (for images) ⇒ spurious correlations
- memory size (RAM), GPU/CPU consumption
- can't store history during learning

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ●○○	Bonus
Problems				

Big data, scaling

- number of examples needed (huge)
- ML viewpoint: number of parameters ⇒ overfit
- ▶ input dimension: big (for images) ⇒ spurious correlations
- memory size (RAM), GPU/CPU consumption
- can't store history during learning

Optimization and meta-parameters

- initialization, optimization, sensitivity to adversarial noise
- for each new task, ask experts to build a new architecture
- and optimize over meta-parameters (precise architecure, type of neuron...)

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ●○○	Bonus
Problems				

Big data, scaling

- number of examples needed (huge)
- ML viewpoint: number of parameters ⇒ overfit
- ▶ input dimension: big (for images) ⇒ spurious correlations
- memory size (RAM), GPU/CPU consumption
- can't store history during learning

Optimization and meta-parameters

- initialization, optimization, sensitivity to adversarial noise
- for each new task, ask experts to build a new architecture
- and optimize over meta-parameters (precise architecure, type of neuron...)

Lack of theory

- No theoretical guarantee (that training a network will work)
- in practice: small networks (3 layers) are easy to learn and sufficient to provide descriptors for many tasks

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ●○○	Bonus
Problems				

Big data, scaling

- number of examples needed (huge)
- ML viewpoint: number of parameters ⇒ overfit
- input dimension: big (for images) => spurious correlations
- memory size (RAM), GPU/CPU consumption
- can't store history during learning

Optimization and meta-parameters

- initialization, optimization, sensitivity to adversarial noise
- for each new task, ask experts to build a new architecture
- and optimize over meta-parameters (precise architecure, type of neuron...)

Lack of theory

- No theoretical guarantee (that training a network will work)
- in practice: small networks (3 layers) are easy to learn and sufficient to provide descriptors for many tasks

Learning a program

- no variable or memory in the network... how to learn a program?
- how to reuse a neural network as part of another task?

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ●○○	Bonus
Problems				

Big data, scaling

- number of examples needed (huge)
- ML viewpoint: number of parameters ⇒ overfit
- input dimension: big (for images) => spurious correlations
- memory size (RAM), GPU/CPU consumption
- can't store history during learning NoBackTrack

Optimization and meta-parameters

- initialization, optimization, sensitivity to adversarial noise
- \blacktriangleright for each new task, ask experts to build a new architecture \Longrightarrow learn structure
- and optimize over meta-parameters (precise architecure, type of neuron...)

Lack of theory

- No theoretical guarantee (that training a network will work)
- in practice: small networks (3 layers) are easy to learn and sufficient to provide descriptors for many tasks

Learning a program \implies my long-term goal

- no variable or memory in the network... how to learn a program?
- how to reuse a neural network as part of another task?

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
O	O		○●○	000000
Learn the structure				

Architecture design issues

- Impressive results in computer vision, but large networks hard to optimize
- many different architectures are tried
- many meta-parameters to tune (type of neurons, layer type and size, stride, ...)
- a lot of time lost

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ○●○	Bonus
Learn the structure				

Architecture design issues

- Impressive results in computer vision, but large networks hard to optimize
- many different architectures are tried
- many meta-parameters to tune (type of neurons, layer type and size, stride, ...)
- a lot of time lost

Elements of design

- convolutional networks: suited for images (and text); exploit spatial information, reduce the number of parameters, invariance to translation
- recently, slightly more flexible architectures tried (skip layers when needed)
- more complex architectures too... (pseudo-recursive structures)
- stochastic architectures: e.g., drop-out (neurons deleted half of the time during training)
- stochastic weights (drawn according to Gaussian distribution, parameter = mean)
- neural networks are highly redundant/robust in the sense that compressing their weights by 90% might not affect them much

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
O	O		○○●	000000
Learn the structure				

(skippable)

An Information Theory viewpoint

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ○○●	Bonus
Learn the structure				

(skippable)

An Information Theory viewpoint

 Kolmogorov complexity: length of the shortest program which can generate the data

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ○○●	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- ▶ in practice: search for the simplest model suited to the data

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ○○●	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- in practice: search for the simplest model suited to the data
- here, we see neural networks as programs and try to exploit any form of redundancy

Introduction O	What's a neural net? O	Architectures	Problems and research tracks ○○●	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- in practice: search for the simplest model suited to the data
- here, we see neural networks as programs and try to exploit any form of redundancy
- What is the equivalent of functions in neural networks?

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- in practice: search for the simplest model suited to the data
- here, we see neural networks as programs and try to exploit any form of redundancy
- What is the equivalent of functions in neural networks?
- repeated blocks of neurons with similar weights

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- in practice: search for the simplest model suited to the data
- here, we see neural networks as programs and try to exploit any form of redundancy
- What is the equivalent of functions in neural networks?
- repeated blocks of neurons with similar weights
- self-similarity prior on neural networks
 - \implies emerging structures during training

Introduction O	What's a neural net?	Architectures	Problems and research tracks ○○●	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- in practice: search for the simplest model suited to the data
- here, we see neural networks as programs and try to exploit any form of redundancy
- What is the equivalent of functions in neural networks?
- repeated blocks of neurons with similar weights
- self-similarity prior on neural networks
 merging structures during training

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus
Learn the structure				

(skippable)

- Kolmogorov complexity: length of the shortest program which can generate the data
- in practice: search for the simplest model suited to the data
- here, we see neural networks as programs and try to exploit any form of redundancy
- What is the equivalent of functions in neural networks?
- repeated blocks of neurons with similar weights
- self-similarity prior on neural networks
 merging structures during training
- simplest version: a block = one edge or one neuron ⇒ Bernouilli process
 ⇒ Pierre Wolinski PhD thesis

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus ●00000
Bonus				

Bonus

・ロ・・聞・・思・・思・ のへの

G. Charpiat Neural Networks TAU

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus o●oooo
Bonus				

Architectures bonus: unsupervised learning

- generative models: auto-encoders
- adversarial approaches (DANN, GAN): to help improve the generated distribution / in order not to have to specify the task explicitely!

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 00●000
Examples				

Examples or recurrent networks as PDEs

Semantic segmentation of images

- dataset of satellite images
- classes: road, building, grass, trees, lake, swimming pool...
- difficulties: very small objects, need for precise boundaries
- refine available segmentation with a Partial Differential Equation (PDE)
- learn it with a recurrent network

G. Charpiat Neural Networks TAU

Introduction	What's a neural net?	Architectures	Problems and research tracks	Bonus
				00000
Bonus examples				

Examples or recurrent networks as PDEs

scores (bottom rows) through RNN iterations.

G. Charpiat

Neural Networks

00

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 000●00
Bonus examples				

Examples or recurrent networks as PDEs

 joint work with Emmanuel Maggiori & Yuliya Tarabalka (INRIA Sophia-Antipolis)

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 0000●0
History				

Perceptron [Rosenblatt, 1957]

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 0000●0
History				

Perceptron [Rosenblatt, 1957]

TAU

inputs

- only one layer
- = linear classifier
- inspired from brain and Hebb's work

Introduction O	What's a neural net?	Architectures	Problems and research tracks	Bonus 00000●
History				

Perceptron [Rosenblatt, 1957]

・ロット 白マ マルマット 山 マシン

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus ○○○○○●
History				

- Perceptron [Rosenblatt, 1957]
- Multi-layer perceptron (MLP)
 - Backpropagation (derivation chain rule)

G. Charpiat Neural Networks TAU

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 00000●
History				

- Perceptron [Rosenblatt, 1957]
- Multi-layer perceptron (MLP)
 - Backpropagation (derivation chain rule)
- Book Perceptrons [Minsky & Papert, 1969]
 - Theorem: A perceptron (single layer) cannot learn XOR
 - break in research on neural networks

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus ○○○○○●
History				

- Perceptron [Rosenblatt, 1957]
- Multi-layer perceptron (MLP)
 - Backpropagation (derivation chain rule)

Book Perceptrons [Minsky & Papert, 1969]

- Theorem: A perceptron (single layer) cannot learn XOR
- break in research on neural networks

End of 80's, 90's, 2000: resurgence

- in computer vision: LeCun, Hinton, Bengio, Schmidhuber...
- but no impact yet in the community (hand-made descriptors)

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus 00000●
History				

- Perceptron [Rosenblatt, 1957]
- Multi-layer perceptron (MLP)
 - Backpropagation (derivation chain rule)

Book Perceptrons [Minsky & Papert, 1969]

- Theorem: A perceptron (single layer) cannot learn XOR
- break in research on neural networks

End of 80's, 90's, 2000: resurgence

- in computer vision: LeCun, Hinton, Bengio, Schmidhuber...
- but no impact yet in the community (hand-made descriptors)

2012: neural nets win great challenges in vision (image classification)

"Deep Learning"

Introduction O	What's a neural net? O	Architectures	Problems and research tracks	Bonus ○○○○○●
History				

Perceptron [Rosenblatt, 1957]

Multi-layer perceptron (MLP)

Backpropagation (derivation chain rule)

Book Perceptrons [Minsky & Papert, 1969]

- Theorem: A perceptron (single layer) cannot learn XOR
- $\blacktriangleright \implies$ break in research on neural networks

End of 80's, 90's, 2000: resurgence

- in computer vision: LeCun, Hinton, Bengio, Schmidhuber...
- but no impact yet in the community (hand-made descriptors)

2012: neural nets win great challenges in vision (image classification)

"Deep Learning"

Since then: explosion of results and popularity

