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Gradient (definition)

Energy E depending on a variable f (vector or function)
gradient VE(f) =7

Directional derivative: consider a variation v of f.

SE(F)(v) = fim £ V) — E(F)

e—0 S

X

f

Hopefully, E is linear and continuous wrt v. Riesz representation
theorem = gradient: variation VE(f) such that

1

Y, SE(F)(v) = (VE(f)|v X dient
(F)(v) = (VE(f)|v) f\gralen

Usual inner product (-|-): L?
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Gradient (definition)

Gradient Descent Scheme

Build minimizing path:

fio = fo
of ,

= V¢ E(f
9t ¢ E(F)
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Gradient (definition)
Gradient Descent Scheme

Build minimizing path:

fi_o = fo
of ,
— = — E(f
at Vf ()

Change the inner product P = change the minimizing
path

—VFE(f) = arg min {5E(f)(v) + % ||v||%}

v

P as a prior on the minimizing flow
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Gradient (definition)

Example 1: vectors, lists of parameters
E(d) = E(a1, 00, a3, ..., oup)
Usual L? gradient: VE Z@E a1, 2, ..., Qlp) €;

(supposes «; independent)
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Gradient (definition)

Example 1: vectors, lists of parameters
E(d) = E(a1, 00, a3, ..., oup)
Usual L? gradient: VE Z@E a1, 2, ..., p) €

(supposes «; independent)
Should all parameters «; have the same weights ?

Consider a different parameterization F = P(@):
ﬁ1:10a1 and ﬁ,-:oz,- Vi#l

F(F) = E(P~Y(F)) = E(0.151, B2, .., )
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Gradient (definition)

Example 1: vectors, lists of parameters
_)
E( a ) = E(Oé]_, a2, a3, ..., an)

Usual L? gradient: VE Z@E a1, 2, ..., p) €

(supposes «; independent)
Should all parameters «; have the same weights ?

Consider a different parameterization F = P(@):
ﬁ1:10a1 and ﬁ,-:oz,- Vi#l

F(F) = E(P~Y(F)) = E(0.151, B2, .., )
Vi#1, aﬁlF(?) = 801:'E(a>)
05, F(F) = 0.1 00, E(@)],_pr 3
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Gradient (definition)

E(ﬁ) = E(aq,ap, a3, ...,ap)
B1 =10 g
aﬁlF(ﬁ) =0.1 6a1E(a>)‘a:p—1(F)

gradient ascent wrt 5: §31 = (%IF(F)

— 61 =0.10,,E()

gradient ascent wrt a: day = 9, E()

— 0p1 =10 6y = 10 D, E(@)

Difference between two approaches: factor 100 for the first
parameter!

Conclusion: L2 inner product is bad (not intrinsic)
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Gradient (definition)

Example 2: (not specific to) kernels and intrinsic gradients

f = ZOJ,‘/((X,‘, )
E(f) = Z IF(xi) — yil + [IFII%

L2 gradient wrt @ not the best idea
Choose a “natural”, intrinsic inner product:

(00,100 p)p = (0F, |0F,) yy = (DF(6 ) [DF(5A b))y = (6 o' DFDF |50 ),
In case of kernels this gives:
(00,160 p)p = (60,|K[6Tp)
Corresponding gradient:

VEE = (“DF DF) " (Poam(VHE) )
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Gradient (definition)

Example 3: parameterized shapes

The same as for kernels

Choose any representation for shapes (splines, polygon,
level-set...)

Intrinsic gradient = as close as possible to the “real”
evolution, most independent as possible of the
representation /parameterization
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Gradient (definition)

Example 4: shapes, contours

«
< > Curve f
< Deformation field v,
2 in the tangent space of f

Usual tangent space: L3(f):

(i) o = [ () -v() ()
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Gradient (definition)

Examples of inner products for shapes (or functions)

L? inner product: (u V)2 = /u(x) -v(x) df(x)
f
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Gradient (definition)

Examples of inner products for shapes (or functions)

L? inner product: (u V)2 = /u(x) -v(x) df(x)
f
H" inner product: (u|v)n = (u[v) 2 + (0xu0xv) 125)

Interesting property of the H! gradient:

2
VHE = argirl':f HU—VBEHB—FH@XuH%z
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Gradient (definition)

Examples of inner products for shapes (or functions)

L? inner product: (u V)2 = /u(x) -v(x) df(x)
f

H" inner product: (u|v)n = (u[v) 2 + (0xu0xv) 125)
Set S of prefered transformations (e.g. rigid motion)
Projection on §: @

Projection orthogonal to S: R (Q + R = Id)

(ulv)s = (Q)[Q(v)) 2 + a(R(u) [R(v))2
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Gradient (definition)

(or functions)

L? inner product: (u V)25 = /u(x)-v(x) df(x)
f

H! inner product: (u|v),; = (u V) 2(6) T (Oxu[0xv) 12y
Set of prefered transformations (e.g. rigid motion)
Example: minimizing the Hausdorff distance between two
curves

of
= =- £ f
or =)

usual rigidified
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Gradient (definition)

Examples of inner products for shapes (or functions)

L? inner product: (u V)2 = /u(x) -v(x) df(x)
f

H" inner product: (u|v)n = (u[v) 2 + (0xu0xv) 125)
Set of prefered transformations (e.g. rigid motion)

Example: minimizing the Hausdorff distance between two
curves

Change an inner product for another one: linear symmetric
positive definite transformation of the gradient
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Gradient (definition)

Examples of inner products for shapes (or functions)

L? inner product: (u V)25 = /u(x) -v(x) df(x)
f

H" inner product: (u|v)n = (u[v) 2 + (0xu0xv) 125)
Set of prefered transformations (e.g. rigid motion)
Example: minimizing the Hausdorff distance between two
curves

Change an inner product for another one: linear symmetric
positive definite transformation of the gradient

Gaussian smoothing of the L? gradient: symmetric positive
definite
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Extension to non-linear criteria

» —VFPE(f) = arg‘fnin {5E(f)(v) + % ||v||f;.}




Gradient (definition)

Extension to non-linear criteria

_VfE(f) = arg\fnin {(5E(f)(v) + % HV”%}

~VFPE(f) = arg min {SE(f)(v) + Rp(v)}

Example: semi-local rigidification
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Remark on Taylor series and Newton method

> —VFE(f) = a,rg:nin {6E(f)(v) + % ||v||f,}




Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:

Guillaume Charpiat (Parenthesis)

Gradients and inner products



Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:
argmin { E(f)}
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Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:
arg min {E(f) + dE(f)(v)}
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Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {5E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:

argvmin {E(f) +SE(F)(v) + % Hv||f,}
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Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:

argvrnin {E(f) +SE(F)(v) + % Hv||f,} = —V{E(f)

1st order 4+ metric choice? = quadratic
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Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:

argvmin {E(f) +SE(F)(v) + % Hv||f,} = —V{E(f)

1st order 4+ metric choice? = quadratic

arg min {E(f) +SE(F)(v) + %52E(f)(v)(v)}
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Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:

argvmin {E(f) +SE(F)(v) + % Hv||f,} = —V{E(f)

1st order 4+ metric choice? = quadratic

arg min {E(f) +SE(F)(v) + %52E(f)(v)(v)}

quadratic : order-2 Newton
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Gradient (definition)

Remark on Taylor series and Newton method

—VFiE(f) = argvmin {§E(f)(v) + % ||v\|f,}

Different approximations of E(f +v) = different gradient descents:

argvmin {E(f) +SE(F)(v) + % Hv||f,} = —V{E(f)

1st order 4+ metric choice? = quadratic

arg min {E(f) +SE(F)(v) + %52E(f)(v)(v)}

quadratic : order-2 Newton

argvmin {E(f) + 0E(F)(v) + Rp(v)}

1st order + any suitable criterion
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(End of the parenthesis)




