Parametric Models Fitting with Automatic Differentiation

Gabriel Peyré

www. numerical-tours.com

Organized by: Mérouane Debbah \& Gabriel Peyré

Alexandre Allauzen, Paris-Sud. Pierre Alliez, INRIA.
Guillaume Charpiat, INRIA. Emilie Chouzenoux, Paris-Est.

Nicolas Courty, IRISA. Laurent Cohen, CNRS Dauphine. Marco Cuturi, ENSAE. Julie Delon, Paris 5.

Fabian Pedregosa, INRIA.
Julien Tierny, CNRS and P6.
Robin Ryder, Paris-Dauphine.
Gael Varoquaux, INRIA.

Jalal Fadili, ENSICaen.
Alexandre Gramfort, INRIA.
Matthieu Kowalski, Supelec.
Jean-Marie Mirebeau, CNRS,P-Sud.

Parametric Models

(Noisy) observations $\left(x_{i}, y_{j}\right)$, try to infer $y=f(x)$.

Regression $\quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$

Classification $(x, y) \in \mathbb{R}^{n} \times\{-1,1\}$

Parametric Models

(Noisy) observations $\left(x_{i}, y_{j}\right)$, try to infer $y=f(x)$.

Regression $\quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$

Parametric model: $y=f(x, \theta)$, find θ.
Linear model: $f(x, \theta)=\langle x, \theta\rangle$.

Classification $(x, y) \in \mathbb{R}^{n} \times\{-1,1\}$

Parametric Models

(Noisy) observations (x_{i}, y_{j}), try to infer $y=f(x)$.

Regression $\quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$

Parametric model: $y=f(x, \theta)$, find θ.
Linear model: $f(x, \theta)=\langle x, \theta\rangle$.

Deep network:

$$
f(x, \theta)=\theta_{K}\left(\ldots \rho \left(\theta _ { 2 } \left(\rho\left(\theta_{1}(x) \ldots\right)\right.\right.\right.
$$

Classification $(x, y) \in \mathbb{R}^{n} \times\{-1,1\}$

Empirical Loss Minimization

Regression: $\quad\left(y, y^{\prime}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \quad L\left(y, y^{\prime}\right)=\left\|y-y^{\prime}\right\|^{2}$
Classification: $\quad\left(y, y^{\prime}\right) \in \mathbb{R}^{d} \times\{-1,1\}, \quad L\left(y, y^{\prime}\right)=\log \left(\exp \left(-y^{\prime} y\right)+1\right)$

Loss minimization:

$$
\min _{\theta} \sum_{i} L\left(f\left(x_{i}, \theta\right), y_{i}\right) \quad \min _{\theta} \mathbb{E}_{(X, Y)}(L(f(X, \theta), Y))
$$

Empirical Loss Minimization

Regression:

$$
\left(y, y^{\prime}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \quad L\left(y, y^{\prime}\right)=\left\|y-y^{\prime}\right\|^{2}
$$

Classification: $\quad\left(y, y^{\prime}\right) \in \mathbb{R}^{d} \times\{-1,1\}, \quad L\left(y, y^{\prime}\right)=\log \left(\exp \left(-y^{\prime} y\right)+1\right)$

Loss minimization:

$$
\min _{\theta} \sum_{i} L\left(f\left(x_{i}, \theta\right), y_{i}\right)
$$

$$
\min _{\theta} \mathbb{E}_{(X, Y)}(L(f(X, \theta), Y))
$$

Stochastic gradient descent:

- Sample:

$$
(x, y) \in\left\{\left(x_{i}, y_{i}\right)\right\}_{i}
$$

$$
(x, y) \sim(X, Y)
$$

- Update: $\quad \theta^{(\ell+1)} \stackrel{\text { def. }}{=} \theta^{(\ell)}-\tau_{\ell} \nabla_{\theta} \ell_{x, y}(\theta)$
where $\quad \ell_{x, y}(\theta) \stackrel{\text { def. }}{=} L(f(x, \theta), y)$

Gradient Computation

How to compute $\nabla \ell_{x, y}(\theta) ? \quad \ell_{x, y}(\theta) \stackrel{\text { def. }}{=} L(f(x, \theta), y)$

Chain rule: $\quad \nabla \ell_{x, y}(\theta)=[\partial f(x, \theta)]^{\top}(\nabla L(f(x, \theta), y))$
Linear $f(x, \theta)=\theta \times x: \partial f(x, \theta)=\theta$.
Non-linear $f(x, \theta)$: painful \ldots but $\ell_{x, y}$ it is just a computer program.

Gradient Computation

How to compute $\nabla \ell_{x, y}(\theta) ? \quad \ell_{x, y}(\theta) \stackrel{\text { def. }}{=} L(f(x, \theta), y)$

Chain rule: $\quad \nabla \ell_{x, y}(\theta)=[\partial f(x, \theta)]^{\top}(\nabla L(f(x, \theta), y))$
Linear $f(x, \theta)=\theta \times x: \partial f(x, \theta)=\theta$.
Non-linear $f(x, \theta)$: painful \ldots but $\ell_{x, y}$ it is just a computer program.

Computer program \Leftrightarrow directed acyclic graph \Leftrightarrow linear ordering of nodes $\left(\theta_{r}\right)_{r}$

```
function \ell( }\mp@subsup{0}{1}{},\ldots,\mp@subsup{0}{M}{}
    for r = M +1,\ldots,R
    | |r= gr (
    return 期
```


Example

Example

Chain rules:
${ }^{66} \frac{\partial \theta_{j}}{\partial \theta_{1}}=\sum_{i \in \operatorname{Parent}(j)} \frac{\partial \theta_{j}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial \theta_{1}}{ }^{99}$
"Classical" evaluation: forward.
Complexity ~ \#inputs.

Example

Chain rules:
${ }^{66} \frac{\partial \theta_{j}}{\partial \theta_{1}}=\sum_{i \in \operatorname{Parent}(j)} \frac{\partial \theta_{j}}{\partial \theta_{i}} \frac{\partial \theta_{i}{ }^{99}}{\partial \theta_{1}}{ }_{\partial_{i} g_{j}(\theta)}$
"Classical" evaluation: forward. Complexity ~ \#inputs.

Backward evaluation.
Complexity \sim \#outputs (1 for grad).

Backward Automatic Differentiation

$$
\ell\left(\theta_{1}, \theta_{2}\right) \stackrel{\text { def. }}{=} \theta_{2} e^{\theta_{1}} \sqrt{\theta_{1}+\theta_{2} e^{\theta_{1}}}
$$

computing ℓ

computing $\nabla \ell$
function $\ell\left(\theta_{1}, \ldots, \theta_{M}\right)$
for $r=M+1, \ldots, R$
$\mid \theta_{r}=g_{r}\left(\theta_{\text {Parents }(r)}\right)$
return θ_{R}
function $\nabla \ell\left(\theta_{1}, \ldots, \theta_{M}\right)$

$$
\begin{aligned}
& \nabla_{R} \ell=1 \\
& \text { for } r=R-1, \ldots, 1
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{r} \ell=\sum_{s \in \operatorname{Child}(r)} \partial_{r} g_{s}(\theta) \nabla_{s} \ell \\
& \text { return }\left(\nabla_{1} \ell, \ldots, \nabla_{M} \ell\right)
\end{aligned}
$$

What's Next

Alexandre Allauzen: deep neural networks training.

$$
\boldsymbol{W}_{:, j}^{(2)}
$$

$1 / 836 / 03100112730465$ 26471899307102035465

Guillaume Charpiat: architecture of deep neural networks.

CONV 2

G(z)
CONV 3

