
Parametric Models Fitting
with Automatic
Differentiation

Gabriel Peyré

ÉCOLE NORMALE
S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

Alex Gramfort Algorithms for the Lasso

Outline

2

• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com

Optimal Transport
Geodesics

Meshes

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

Optimization Deep Learning

G K Nicholls et al. 5

data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree

G
afat

Argobba
Am

haric

Harari

Zway
W

alani

M
esqan

Innem
or

Chaha
G

eto

M
esm

es
Soddo

Tigrinya
Tigre

Akkadian

O
gadenArabic

M
oroccanArabic

M
ehri

Harsusi

Jibbali

Soqotri

Hebrew
Aram

aic

82

69

98

99

79

67

0
1000

2000
3000

4000
5000

FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.

Sparsity
Neuro-imaging Patches Bayesian

Parallel/Stochastic

https://mathematical-coffees.github.io

Alexandre Allauzen, Paris-Sud.
Pierre Alliez, INRIA.

Guillaume Charpiat, INRIA.
Emilie Chouzenoux, Paris-Est.

Nicolas Courty, IRISA.
Laurent Cohen, CNRS Dauphine.

Marco Cuturi, ENSAE.
Julie Delon, Paris 5.

Jalal Fadili, ENSICaen.
Alexandre Gramfort, INRIA.
Matthieu Kowalski, Supelec.

Jean-Marie Mirebeau, CNRS,P-Sud.

Fabian Pedregosa, INRIA.
Julien Tierny, CNRS and P6.

Robin Ryder, Paris-Dauphine.
Gael Varoquaux, INRIA.

Organized by: Mérouane Debbah & Gabriel Peyré

https://mathematical-coffees.github.io

Parametric Models

y

(Noisy) observations (xi, yj), try to infer y = f(x).

x

(xi, yi)
y = f(x)

x

xi
xj

fj = 1

f(x) = 0

fi = �1

Classification

Regression

(x, y) 2 Rn ⇥ Rp (x, y) 2 Rn ⇥ {�1, 1}

Parametric Models

y

(Noisy) observations (xi, yj), try to infer y = f(x).

x

(xi, yi)
y = f(x)

x

xi
xj

fj = 1

Parametric model: y = f(x, ✓), find ✓.

Linear model: f(x, ✓) = hx, ✓i.

f(x) = 0

x

f(x) = 0x

y
y = f(x)

fi = �1

Classification

Regression

(x, y) 2 Rn ⇥ Rp (x, y) 2 Rn ⇥ {�1, 1}

Parametric Models

y

(Noisy) observations (xi, yj), try to infer y = f(x).

x

(xi, yi)
y = f(x)

x

xi
xj

fj = 1

Parametric model: y = f(x, ✓), find ✓.

Linear model: f(x, ✓) = hx, ✓i.

f(x) = 0

x

f(x) = 0x

y
y = f(x)

fi = �1

Classification

Regression

(x, y) 2 Rn ⇥ Rp (x, y) 2 Rn ⇥ {�1, 1}

x

f(x)

✓1 ✓2 ✓3
✓4

⇢ ⇢ ⇢

Deep network:

f(x, ✓) = ✓K(. . . ⇢(✓2(⇢(✓1(x) . . .)

Empirical Loss Minimization

min
✓

X

i

L(f(xi, ✓), yi) min
✓

E(X,Y)(L(f(X, ✓), Y))

Loss minimization:

Classification: L(y, y0) = log(exp(�y0y) + 1)(y, y0) 2 Rd ⇥ {�1, 1},

Regression: (y, y0) 2 Rd ⇥ Rd, L(y, y0) = ||y � y0||2

Empirical Loss Minimization

min
✓

X

i

L(f(xi, ✓), yi) min
✓

E(X,Y)(L(f(X, ✓), Y))

Loss minimization:

Classification: L(y, y0) = log(exp(�y0y) + 1)(y, y0) 2 Rd ⇥ {�1, 1},

Regression: (y, y0) 2 Rd ⇥ Rd, L(y, y0) = ||y � y0||2

Stochastic gradient descent:

– Sample: (x, y) 2 {(xi, yi)}i (x, y) ⇠ (X,Y)

– Update: ✓(`+1) def.
= ✓(`) � ⌧

`

r
✓

`
x,y

(✓)

where `

x,y

(✓)
def.
= L(f(x, ✓), y)

Gradient Computation

How to compute r`
x,y

(✓)?
`

x,y

(✓)
def.
= L(f(x, ✓), y)

r`

x,y

(✓) = [@f(x, ✓)]> (rL(f(x, ✓), y))Chain rule:

Linear f(x, ✓) = ✓ ⇥ x: @f(x, ✓) = ✓.

Non-linear f(x, ✓): painful . . .

but `
x,y

it is just a computer program.

Gradient Computation

How to compute r`
x,y

(✓)?
`

x,y

(✓)
def.
= L(f(x, ✓), y)

r`

x,y

(✓) = [@f(x, ✓)]> (rL(f(x, ✓), y))Chain rule:

Linear f(x, ✓) = ✓ ⇥ x: @f(x, ✓) = ✓.

Non-linear f(x, ✓): painful . . .

but `
x,y

it is just a computer program.

✓3
✓1

✓2 ✓4

✓5

g3

g4

g5

input
output

return ✓R

✓r = gr(✓Parents(r))
for r = M + 1, . . . , R

function `(✓1, . . . , ✓M)

f
o
r
w
a
r
d

computing `

Computer program, directed acyclic graph, linear ordering of nodes (✓r)r

Example
`(✓1, ✓2)

def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

`

Example
`(✓1, ✓2)

def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

Chain rules:

✓j = gj(✓i)i6j ✓k = gk(✓`)`6k✓i ✓N
gj gk.✓1

@✓j
@✓1

=
X

i2Parent(j)

@✓j
@✓i

@✓i
@✓1

@igj(✓)

“Classical” evaluation: forward.

Complexity ⇠ #inputs.

“ ”

`

Example
`(✓1, ✓2)

def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

Chain rules:

✓j = gj(✓i)i6j ✓k = gk(✓`)`6k✓i ✓N
gj gk.✓1

“ ”@✓N
@✓j

=
X

k2Child(j)

@✓N
@✓k

@✓k
@✓j

@jgk(✓)rk`(✓)
rj`(✓)

Complexity ⇠ #outputs (1 for grad).

Backward evaluation.

@✓j
@✓1

=
X

i2Parent(j)

@✓j
@✓i

@✓i
@✓1

@igj(✓)

“Classical” evaluation: forward.

Complexity ⇠ #inputs.

“ ”

`

Backward Automatic Differentiation

return ✓R

✓r = gr(✓Parents(r))
for r = M + 1, . . . , R

function `(✓1, . . . , ✓M)

f
o
r
w
a
r
d

for r = R� 1, . . . , 1
rR` = 1

rr` =
X

s2Child(r)

@rgs(✓)rs`

b
ac
kw

ar
d

return (r1`, . . . ,rM `)

function r`(✓1, . . . , ✓M)

computing `

computing r`

`(✓1, ✓2)
def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

`

Alexandre Allauzen: deep neural networks training.

Guillaume Charpiat: architecture of deep neural networks.

Introduction What’s a neural net? Impressive results in computer vision Problems and research tracks NoBackTrack

Impressive results in computer vision

Image generation : “face arithmetics”

Unsupervised representation learning with deep convolutional generative adversarial networks
Alec Radford, Luke Metz, Soumith Chintala (Facebook AI Research)

G. Charpiat TAO
Neural Networks

Introduction What’s a neural net? Impressive results in computer vision Problems and research tracks NoBackTrack

Impressive results in computer vision

Image generation

Unsupervised representation learning with deep convolutional generative adversarial networks
Alec Radford, Luke Metz, Soumith Chintala (Facebook AI Research)

G. Charpiat TAO
Neural Networks

Introduction What’s a neural net? Impressive results in computer vision Problems and research tracks NoBackTrack

Impressive results in computer vision

Style transfer

A Neural Algorithm of Artistic Style
Leon A. Gatys, Alexander S. Ecker,
Matthias Bethge

G. Charpiat TAO
Neural Networks

Neural Nets : Basics Training by back-propagation

Back-propagation of the loss gradient
For the hidden layer - 2

(

y

(1)

y

(2)

W

(2)

:,j

y

(1)

j

�

(2)

Backward / Back-propagation :

�

(1)

j

= r
a

(1)

j
=

@l(✓,x

(i)

, c

(i)

)

@a

(1)

j

=
@l(✓,x

(i)

, c

(i)

)

@y

(2)

⇥ @y

(2)

@a

(2)

⇥ @a

(2)

@y

(1)

j

⇥
@y

(1)

j

@a

(1)

j

= f

0(1)(a
j

)
⇣
W

(2)

:,j

t

�

(2)

⌘

Alexandre Allauzen (LIMSI-CNRS) NNet basics 5 mai 2017 19 / 45

Vanishing gradient

Experimental observations (MNIST task) - 1

The MNIST database

Comparison of di↵erent depth for feed-forward architecture

x

(1)

x

(2)

x

(3)

x

(L)

W

(1)

y

(1)

W

(2)

y

(2)

y

(L�1)

W

(L)

y

(L) : output

Hidden layers have a sigmoid activation function.

The output layer is a softmax.

Alexandre Allauzen (LIMSI-CNRS) NNet basics 5 mai 2017 41 / 45

Vanishing gradient

Experimental observations (MNIST task) - 2

Varying the depth

Without hidden layer : ⇡ 88% accuracy

1 hidden layer (30) : ⇡ 96.5% accuracy

2 hidden layer (30) : ⇡ 96.9% accuracy

3 hidden layer (30) : ⇡ 96.5% accuracy

4 hidden layer (30) : ⇡ 96.5% accuracy

(From http://neuralnetworksanddeeplearning.

com/chap5.html)

Alexandre Allauzen (LIMSI-CNRS) NNet basics 5 mai 2017 42 / 45

Vanishing gradient

Intuitive explanation - 2

The derivative of the activation function : �

0

�10 �5 0 5 10
0

0.25

0.5

0.75

1

�

0(x) = �(x)(1 � �(x))

But weights are initialize around 0.

The di↵erent layers in our deep network are learning at vastly

di↵erent speeds :

when later layers in the network are learning well,

early layers often get stuck during training, learning almost nothing at all.

Alexandre Allauzen (LIMSI-CNRS) NNet basics 5 mai 2017 44 / 45

What’s Next

