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• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com



Optimal Transport
Geodesics

Meshes

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

Optimization Deep Learning

G K Nicholls et al. 5

data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree
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FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.
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Parametric Models
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Deep network:
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Empirical Loss Minimization

min
✓

X

i

L(f(xi, ✓), yi) min
✓

E(X,Y )(L(f(X, ✓), Y ))

Loss minimization:

Classification: L(y, y0) = log(exp(�y0y) + 1)(y, y0) 2 Rd ⇥ {�1, 1},

Regression: (y, y0) 2 Rd ⇥ Rd, L(y, y0) = ||y � y0||2
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Stochastic gradient descent:

– Sample: (x, y) 2 {(xi, yi)}i (x, y) ⇠ (X,Y )
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Gradient Computation

How to compute r`
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Non-linear f(x, ✓): painful . . .

but `
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it is just a computer program.
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Backward Automatic Differentiation
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Alexandre Allauzen: deep neural networks training.

Guillaume Charpiat: architecture of deep neural networks.

Introduction What’s a neural net? Impressive results in computer vision Problems and research tracks NoBackTrack

Impressive results in computer vision

Image generation : “face arithmetics”

Unsupervised representation learning with deep convolutional generative adversarial networks
Alec Radford, Luke Metz, Soumith Chintala (Facebook AI Research)
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Introduction What’s a neural net? Impressive results in computer vision Problems and research tracks NoBackTrack

Impressive results in computer vision

Style transfer

A Neural Algorithm of Artistic Style
Leon A. Gatys, Alexander S. Ecker,
Matthias Bethge
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Neural Nets : Basics Training by back-propagation

Back-propagation of the loss gradient
For the hidden layer - 2
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Vanishing gradient

Experimental observations (MNIST task) - 1

The MNIST database

Comparison of di↵erent depth for feed-forward architecture
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(L) : output

Hidden layers have a sigmoid activation function.

The output layer is a softmax.
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Vanishing gradient

Experimental observations (MNIST task) - 2

Varying the depth

Without hidden layer : ⇡ 88% accuracy

1 hidden layer (30) : ⇡ 96.5% accuracy

2 hidden layer (30) : ⇡ 96.9% accuracy

3 hidden layer (30) : ⇡ 96.5% accuracy

4 hidden layer (30) : ⇡ 96.5% accuracy

(From http://neuralnetworksanddeeplearning.

com/chap5.html)
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Vanishing gradient

Intuitive explanation - 2

The derivative of the activation function : �

0

�10 �5 0 5 10
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0.25

0.5

0.75

1

�

0(x) = �(x)(1 � �(x))

But weights are initialize around 0.

The di↵erent layers in our deep network are learning at vastly

di↵erent speeds :

when later layers in the network are learning well,

early layers often get stuck during training, learning almost nothing at all.
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What’s Next


