Sparsity and Compressed Sensing

Jalal Fadili

Normandie Université-ENSICAEN, GREYC
Mathematical coffees 2017

Recap: linear inverse problems

- A is fat (underdetermined system).
- Solution is not unique (fundamental theorem of linear algebra).
- Are we stuck ?
- No if the dimension of x is intrinsically small.

Geometry of inverse problems

Strong notion of sparsity

\mathbb{R}^{2}

Strong notion of sparsity

- 0-sparse

Strong notion of sparsity

- 0-sparse
- 1-sparse

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

Strong notion of sparsity

- 0-sparse

Strong notion of sparsity

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

- 0-sparse
- 1-sparse
- 2-sparse

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

0-sparse

- 1-sparse
- 2-sparse
- 3-sparse = dense

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

\mathbb{R}^{3}
$\operatorname{supp}(x)=\left\{i=1, \cdots, n: x_{i} \neq 0\right\}$

$$
\|x\|_{0}=\# \operatorname{supp}(x)
$$

(Not a norm : not positively homogenenous)

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

\mathbb{R}^{2}

\mathbb{R}^{3}

$$
\begin{aligned}
\operatorname{supp}(x)=\{i & \left.=1, \cdots, n: x_{i} \neq 0\right\} \\
\|x\|_{0} & =\# \operatorname{supp}(x)
\end{aligned}
$$

(Not a norm : not positively homogenenous)
Definition (Informal) $x \in \mathbb{R}^{n}$ is sparse iff $\|x\|_{0} \ll n$.

Strong notion of sparsity

- 0-sparse
- 1-sparse
- 2-sparse = dense

\mathbb{R}^{3}

$$
\begin{gathered}
\operatorname{supp}(x)=\left\{i=1, \cdots, n: x_{i} \neq 0\right\} \\
\|x\|_{0}=\# \operatorname{supp}(x)
\end{gathered}
$$

(Not a norm : not positively homogenenous)
Definition (Informal) $x \in \mathbb{R}^{n}$ is sparse iff $\|x\|_{0} \ll n$.

Model of s-sparse vectors : a union of subspaces

$$
\Sigma_{s}=\bigcup_{i}\left\{V_{i}=\operatorname{span}\left(\left(e_{j}\right)_{1 \leq j \leq n}\right): \operatorname{dim}\left(V_{i}\right)=s\right\}
$$

Weak notion of sparsity

- In nature, signals, images, information, are not (strongly) sparse.

Weak notion of sparsity

- In nature, signals, images, information, are not (strongly) sparse.

Weak notion of sparsity

- In nature, signals, images, information, are not (strongly) sparse.

Weak notion of sparsity

- In nature, signals, images, information, are not (strongly) sparse.

From now on, sparsity is intended in strong sense

What sparsity good for?

Solve $y=\mathrm{A} x$ where x is sparse

- If $\|x\|_{0} \leq m$ and A_{I} is full-rank ($I \stackrel{\text { def }}{=} \operatorname{supp}(x)$), we are done.
- Indeed, at least as many equations as unknowns:

$$
y=A_{I} x_{I} .
$$

- In practice, the support I is not known.
- We have to infer it from the sole knowledge of y and A .

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{0} \text { such that } y=\mathrm{A} x
$$

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ such that $y=\mathrm{A} x$

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ such that $y=\mathrm{A} x$

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ such that $y=\mathrm{A} x$

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ such that $y=\mathrm{A} x$

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ such that $y=\mathrm{A} x$

Regularization

Solve $y=\mathrm{A} x$ where x is sparse

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{0} \text { such that } y=\mathrm{A} x
$$

- Not convex, not even continuous.
- In fact, this is a combinatorial NP-hard problem.
- Can we find a viable alternative ?

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

```
min
```

Not continuous.
NP-hard.

- Sparsest solution.

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ s.t. $y=A x$
m : Not convex.
Not continuous.
NP-hard.
Sparsest solution.

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{0.5} \text { s.t. } y=\mathrm{A} x
$$

$\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

Not convex.
Not continuous.
NP-hard.
Sparsest solution.
$\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0} \quad$ s.t. $y=A x$

Not convex.
Not continuous.
NP-hard.
Sparsest solution.
$\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0.5}$ s.t. $y=\mathrm{A} x$

Not convex.
Continuous.
Sparsest solution.

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

Not convex.
Not continuous.
NP-hard.
(:) Sparsest solution.

Not convex.
Continuous.
Sparsest solution.
$\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$
$\min _{x \in \mathbb{R}^{n}}\|x\|_{2}$ s.t. $y=\mathrm{A} x$
(-) Continuous.

- Convex.
\because Dense (LS) solution

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ s.t. $y=\mathrm{A} x$

Not convex.
Not continuous.
NP-hard.
(-) Sparsest solution.
$\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0.5}$ s.t. $y=\mathrm{A} x$

Not convex.
Continuous.
Sparsest solution.
$\min _{x \in \mathbb{R}^{n}}\|x\|_{2}$ s.t. $y=\mathrm{A} x$
(:) Continuous.

- Convex.
\because Dense (LS) solution

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

$\min _{x \in \mathbb{R}^{n}}\|x\|_{0}$ s.t. $y=\mathrm{A} x$

Not convex.
Not continuous.
NP-hard.
(:) Sparsest solution.

Not convex.
Continuous.
Sparsest solution.

(-) Continuous.

- Convex.
\because Dense (LS) solution

Continuous.
Convex.
Dense (LS) solution

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

Relaxation

Solve $y=\mathrm{A} x$ where x is sparse

Basis Pursuit

$\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$
$\min _{x \in \mathbb{R}^{n}}\|x\|_{1}$ s.t. $y=\mathrm{A} x$

Contínuous.
Convex.
(-) Sparsest solution.

- Continuous.
- Convex.
\because Dēnse (LS) solution

$\min _{x \in \mathbb{P}^{n}}\|x\|_{0.5}$ s.t. $y=\mathrm{A} x$

Continuous.
Convex.
Dense (LS) solution

Tightest convex relaxation

$\min _{x \in \mathbb{R}^{n}}\|x\|_{1}$ s.t. $y=\mathrm{A} x \quad(\mathrm{BP})$

Tightest convex relaxation

$\min _{x \in \mathbb{R}^{n}}\|x\|_{1}$ s.t. $y=\mathrm{A} x$
 (BP)

Tightest convex relaxation

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \text { s.t. } y=\mathrm{A} x \quad \text { (BP) }
$$

ℓ_{1} is the tightest convex relaxation of ℓ_{0}

Error correction problem

Find x from $v=\mathrm{B} w+e \longrightarrow$ Error: small fraction

 of corruptionsCorrupted "ciphertext"
$n>\mathbb{R}^{n}$

Codewords

Error correction problem

Find x from $v=\mathrm{B} w+e$

- A such that $\operatorname{span}(B) \subset \operatorname{ker}(A)$, i.e. $A B=0$.
- Multiply v by A :

$$
y=\mathrm{A} v=\mathrm{A} e
$$

- Only a small fraction of corruptions means that e is sparse.
- The original problem can be cast as

$$
\begin{aligned}
& x^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}}\|x\|_{1} \text { s.t. } y=\mathrm{A} x \\
& w^{\star}=\mathrm{B}^{+} x^{\star}
\end{aligned}
$$

Question : when $x^{\star}=e$ so that $w^{\star}=w$? (see following talks).

Optimization algorithms

$$
\min _{\mathscr{x} \subset \mathbb{P}^{n}}\|x\|_{1} \text { s.t. } y=\mathrm{A} x
$$

(BP)

- BP as a linear program :
- Decompose x in its positive and negative part and lift in $\mathbb{R}^{2 n}$:

$$
\min _{z \in \mathbb{R}^{2 n}} \sum_{i=1}^{2 n} z_{i} \text { s.t. } y=[\mathrm{A}-\mathrm{A}] z, z \geq 0
$$

- Use your favourite LP solvers package : Cplex, Sedumi (IP), Mosek (IP), etc..
- Recover $x^{\star}=\left(z_{i}^{\star}\right)_{i=1}^{n}-\left(z_{i}^{\star}\right)_{i=n+1}^{2 n}$.
- High accuracy.
- Scaling with dimension n.
- Proximal splitting algorithms : DR, ADMM, Primal-Dual (MC of April 18th) :
- Scale well with dimension : cost/iteration $=O(m n)$ vector/matrix multiplication and $O(n)$ soft-thresholding.
- Iterative methods : less accurate.

Recovery guarantees

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \text { s.t. } y=\mathrm{A} x
$$

(BP)

- Noiseless case $y=\mathrm{A} x_{0}$:
- When (BP) has a unique solution that is the sparsest vector x_{0} ?
- Uniform guarantees : which conditions ensure recovery of all s-sparse signals?
- Non-uniform guarantees : which conditions ensure recovery of the s-sparse vector x_{0} ?
- Sample complexity bounds (random settings) : can we constrict sensing matrices s.t. the above conditions hold? What are the optimal scalings of the problem dimensions (n, m, s) ?
- Necessary conditions?
- What if x_{0} is only weakly sparse?

Sensitivity/stability guarantees

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0 \quad(\mathrm{BPDN} / \mathrm{LASSO})
$$

- Noisy case $y=\mathrm{A} x_{0}+\varepsilon$:
- Study stability of (BPDN) solution(s) to the noise ε ?
- ℓ_{2}-stability :

Theorem (Typical statement) Under conditions $X X$, and choice $\lambda=c\|\varepsilon\|_{2}$, there exists C such that any solution x^{\star} of (BPDN) obeys

$$
\left\|x^{\star}-x_{0}\right\|_{2} \leq C\|\varepsilon\|_{2} .
$$

Sensitivity/stability guarantees

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0 \quad(\mathrm{BPDN} / L A S S O)
$$

- Noisy case $y=\mathrm{A} x_{0}+\varepsilon$:
- Study stability of (BPDN) solution(s) to the noise ε ?
- ℓ_{2}-stability :

Theorem (Typical statement) Under conditions $X X$, and choice $\lambda=c\|\varepsilon\|_{2}$, there exists C such that any solution x^{\star} of (BPDN) obeys

$$
\left\|x^{\star}-x_{0}\right\|_{2} \leq C\|\varepsilon\|_{2} .
$$

- Support and sign stability (more stringent) :

Theorem (Typical statement) Under conditions $X X X X$, and choice $\lambda=f\left(\|\varepsilon\|_{2}, \min _{i \in \operatorname{supp}(x)}\left|x_{i}\right|\right)$, the unique solution x^{\star} of (BPDN) obeys

$$
\operatorname{supp}\left(x^{\star}\right)=\operatorname{supp}\left(x_{0}\right) \quad \text { and } \quad \operatorname{sign}\left(x^{\star}\right)=\operatorname{sign}\left(x_{0}\right)
$$

Sensitivity/stability guarantees

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0 \quad(\text { BPDN/LASSO })
$$

- Noisy case $y=\mathrm{A} x_{0}+\varepsilon$:
- Study stability of (BPDN) solution(s) to the noise ε ?
- ℓ_{2}-stability :

Theorem (Typical statement) Under conditions $X X$, and choice $\lambda=c\|\varepsilon\|_{2}$, there exists C such that any solution x^{\star} of (BPDN) obeys

$$
\left\|x^{\star}-x_{0}\right\|_{2} \leq C\|\varepsilon\|_{2} .
$$

- Support and sign stability (more stringent) :

Theorem (Typical statement) Under conditions $X X X X$, and choice $\lambda=f\left(\|\varepsilon\|_{2}, \min _{i \in \operatorname{supp}(x)}\left|x_{i}\right|\right)$, the unique solution x^{\star} of (BPDN) obeys

$$
\operatorname{supp}\left(x^{\star}\right)=\operatorname{supp}\left(x_{0}\right) \quad \text { and } \quad \operatorname{sign}\left(x^{\star}\right)=\operatorname{sign}\left(x_{0}\right) .
$$

- Again uniform vs non-uniform guarantees.
- Sample complexity bounds (random settings) : can we constrict sensing matrices s.t. the above conditions hold? What are the optimal scalings of the problem dimensions (n, m, s) ?
- Necessary conditions?
- What if x_{0} is only weakly sparse?

Sensitivity/stability guarantees

Recovered

Sensitivity/stability guarantees

Original

Recovered

Sensitivity/stability guarantees

Original

Stable support

Recovered

In some applications, what matters is stability of the support

Guarantees from a geometrical perspective

Notions of convex analysis

Convex sets
Non-convex sets

Notions of convex analysis

Convex sets
Non-convex sets

Notions of convex analysis

Convex sets

Definition (Relative interior)
The relative interior $\mathrm{ri}(C)$ of a convex set C is its interior relative to aff (C).

C	$\operatorname{aff}(C)$	$\operatorname{ri}(C)$
$\{x\}$	$\{x\}$	$\{x\}$
$\left[x, x^{\prime}\right]$	line generated by $\left(x, x^{\prime}\right)$	$] x, x^{\prime}[$
Simplex in \mathbb{R}^{n}	$\sum_{i=1}^{n} x_{i}=1$	$\left.\sum_{i=1}^{n} x_{i}=1, x_{i} \in\right] 0,1[$

Subdifferential

Definition (Subdifferential) The subdifferential of a convex function at $x \in \mathbb{R}^{n}$ is the set of slopes of affine functions minorizing f at x, i.e.

$$
\partial f(x)=\left\{u \in \mathbb{R}^{n}: \forall z \in \mathbb{R}^{n}, f(z) \geq f(x)+\langle u, z-x\rangle\right\} .
$$

Subdifferential

Definition (Subdifferential) The subdifferential of a convex function at $x \in \mathbb{R}^{n}$ is the set of slopes of affine functions minorizing f at x, i.e.

Subdifferential

Definition (Subdifferential) The subdifferential of a convex function at $x \in \mathbb{R}^{n}$ is the set of slopes of affine functions minorizing f at x, i.e.

$$
\partial f(x)=\left\{u \in \mathbb{R}^{n}: \forall z \in \mathbb{R}^{n}, f(z) \geq f(x)+\langle u, z-x\rangle\right\} .
$$

$\partial f(x)=\{-1\}, x<0$
$\partial f(x)=\{1\}, x>0$

Subdifferential

Definition (Subdifferential) The subdifferential of a convex function at $x \in \mathbb{R}^{n}$ is the set of slopes of affine functions minorizing f at x, i.e.

$$
\begin{aligned}
& \partial f(x)=\left\{u \in \mathbb{R}^{n}: \forall z \in \mathbb{R}^{n}, f(z) \geq f(x)+\langle u, z-x\rangle\right\} . \\
& \partial f(x)=\{-1\}, x<0 \\
& \partial f(x)=\{1\}, x>0 \\
& \partial f(0)=[-1,1] \longrightarrow
\end{aligned}
$$

Subdifferential

Definition (Subdifferential) The subdifferential of a convex function at $x \in \mathbb{R}^{n}$ is the set of slopes of affine functions minorizing f at x, i.e.

$$
\begin{aligned}
& \partial f(x)=\left\{u \in \mathbb{R}^{n}: \forall z \in \mathbb{R}^{n}, f(z) \geq f(x)+\langle u, z-x\rangle\right\} . \\
& \partial f(x)=\{-1\}, x<0 \\
& \partial f(x)=\{1\}, x>0 \\
& \partial f(0)=[-1,1]
\end{aligned}
$$

Normal cone

Definition (Normal cone) The normal cone to a set C at $x \in C$ is

$$
N_{C}(x)=\left\{u \in \mathbb{R}^{n}:\langle u, z-x\rangle \leq 0, \forall z \in C\right\} .
$$

Normal cone

Definition (Normal cone) The normal cone to a set C at $x \in C$ is

$$
N_{C}(x)=\left\{u \in \mathbb{R}^{n}:\langle u, z-x\rangle \leq 0, \forall z \in C\right\} .
$$

Normal cone

Definition (Normal cone) The normal cone to a set C at $x \in C$ is

$$
N_{C}(x)=\left\{u \in \mathbb{R}^{n}:\langle u, z-x\rangle \leq 0, \forall z \in C\right\} .
$$

Optimality conditions for (BP)

$\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \quad$ s.t. $y=\mathrm{A} x \mid \quad$ (BP)

Optimality conditions for (BP)

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \text { s.t. } y=\mathrm{A} x
$$

(BP)
$x^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}}\|x\|_{1} \quad$ s.t. $\quad y=A x$
$\Longleftrightarrow 0 \in \partial\left\|x^{\star}\right\|_{1}+N_{\operatorname{ker}(\mathrm{A})}\left(x^{\star}\right) \xrightarrow{y}=A x$
$\Longleftrightarrow 0 \in \partial\left\|x^{\star}\right\|_{1}+\operatorname{span}\left(\mathrm{A}^{\top}\right)$
$\Longleftrightarrow \operatorname{span}\left(\mathrm{A}^{\top}\right) \cap \partial\left\|x^{\star}\right\|_{1} \neq \emptyset$
$\Longleftrightarrow \exists \eta \in \mathbb{R}^{m}$ s.t. $\left\{\mathrm{A}_{I}^{\top} \eta=\operatorname{sign}\left(x_{I}^{\star}\right)\right.$,

$$
I \stackrel{\text { def }}{=} \operatorname{supp}\left(x^{\star}\right) \quad\left(\left\|\mathrm{A}^{\wedge} \eta\right\|_{\infty} \leq 1\right.
$$

Dual certificate

Definition The vector $\eta \in \mathbb{R}^{m}$ verifying the source condition

$$
\mathrm{A}^{\top} \eta \in \partial\left\|x_{0}\right\|_{1}
$$

is called a dual certificate associated to x_{0}.

Non-degenerate dual certificate

Definition The vector $\eta \in \mathbb{R}^{m}$ verifying the source condition

$$
\mathrm{A}^{\top} \eta \in \operatorname{ri}\left(\partial\left\|x_{0}\right\|_{1}\right) \Longleftrightarrow \mathrm{A}_{I}^{\top} \eta=\operatorname{sign}\left(\left(x_{0}\right)_{I}\right) \text { and }\left\|\mathrm{A}_{I^{c}}^{\top} \eta\right\|_{\infty}<1 .
$$

is called a non-degenerate dual certificate.

$$
I \stackrel{\text { det }}{=} \operatorname{supp}\left(x_{0}\right.
$$

Non-degenerate dual certificate

Definition The vector $\eta \in \mathbb{R}^{m}$ verifying the source condition

$$
\mathrm{A}^{\top} \eta \in \operatorname{ri}\left(\partial\left\|x_{0}\right\|_{1}\right) \Longleftrightarrow \mathrm{A}_{I}^{\top} \eta=\operatorname{sign}\left(\left(x_{0}\right)_{I}\right) \text { and }\left\|\mathrm{A}_{I^{c}}^{\top} \eta\right\|_{\infty}<1
$$

is called a non-degenerate dual certificate.

$$
I \stackrel{\text { def }}{=} \operatorname{supp}\left(x_{0}\right.
$$

Non-degenerate dual certificate

Definition The vector $\eta \in \mathbb{R}^{m}$ verifying the source condition

$$
\mathrm{A}^{\top} \eta \in \operatorname{ri}\left(\partial\left\|x_{0}\right\|_{1}\right) \Longleftrightarrow \mathrm{A}_{I}^{\top} \eta=\operatorname{sign}\left(\left(x_{0}\right)_{I}\right) \text { and }\left\|\mathrm{A}_{I^{c}}^{\top} \eta\right\|_{\infty}<1
$$

is called a non-degenerate dual certificate.
$\mathrm{A}^{\top} \eta$ hits the relative boundary
$\Longleftrightarrow\{x: y=\mathrm{A} x\}$ tangent to a higher dimensional face of x_{0}
\Longleftrightarrow non-unique solution

Restricted Injectivity

Assumption A_{I} is full column rank, where $I \stackrel{\text { det }}{=} \operatorname{supp}\left(x_{0}\right)$.

- A natural assumption.
- Assume noiseless case $y=\mathrm{A} x_{0}$
- Assume I is known, then

$$
y=\mathrm{A} x_{0}=\mathrm{A}_{I}\left(x_{0}\right)_{I} .
$$

- No hope to recover x_{0} uniquely, even knowing its support, if A_{I} has a kernel.
- All recovery conditions in the literature assume a form of restricted injectivity.

Exact recovery

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \text { s.t. } y=\mathrm{A} x
$$

(BP)

Theorem Let $I=\operatorname{supp}\left(x_{0}\right)$. Assume that there exists a non-degenerate dual certificate at x_{0} and A_{I} is full-rank. Then x_{0} si the unique solution to $(B P)$.

- Even necessary when x_{0} is non-trivial.

Stability without support recovery

$$
\begin{gathered}
y=\mathrm{A} x_{0}+\varepsilon \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0
\end{gathered}
$$

(BPDN/LASSO)

Theorem Let $I=\operatorname{supp}\left(x_{0}\right)$. Assume that there exists a non-degenerate dual certificate η at x_{0} and A_{I} is full-rank. Then, choosing $\lambda=c\|\varepsilon\|_{2}, c>0$, any minimizer x^{\star} of (BPDN/LASSO) obeys

$$
\left\|x^{\star}-x_{0}\right\|_{2} \leq C(c, \mathrm{~A}, I, \eta)\|\varepsilon\|_{2} .
$$

Stability without support recovery

$$
\begin{gathered}
y=\mathrm{A} x_{0}+\varepsilon \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0
\end{gathered}
$$

(BPDN/LASSO)

Theorem Let $I=\operatorname{supp}\left(x_{0}\right)$. Assume that there exists a non-degenerate dual certificate η at x_{0} and A_{I} is full-rank. Then, choosing $\lambda=c\|\varepsilon\|_{2}, c>0$, any minimizer x^{\star} of (BPDN/LASSO) obeys

$$
\left\|x^{\star}-x_{0}\right\|_{2} \leq C(c, \mathrm{~A}, I, \eta)\|\varepsilon\|_{2} .
$$

- Even necessary when x_{0} is non-trivial.

Stable support and sign recovery

$$
\begin{gathered}
y=\mathrm{A} x_{0}+\varepsilon \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0
\end{gathered}
$$

(BPDN/LASSO)

Theorem Let $I=\operatorname{supp}\left(x_{0}\right)$. Assume that A_{I} is full-rank and

$$
\eta_{F}=\mathrm{A}_{I}\left(\mathrm{~A}_{I}^{\top} \mathrm{A}_{I}\right)^{-1} \operatorname{sign}\left(\left(x_{0}\right)_{I}\right)
$$

is a non-degenerate dual certificate. Then, choosing

$$
c_{1}\|\varepsilon\|_{2}<\lambda<c_{2} \min _{i \in I}\left|\left(x_{0}\right)_{i}\right|
$$

(BPDN/LASSO) has a unique solution x^{\star} which moreover satisfies

$$
\operatorname{supp}\left(x^{\star}\right)=I \text { and } \operatorname{sign}\left(x^{\star}\right)=\operatorname{sign}\left(x_{0}\right) .
$$

Stable support and sign recovery

$$
\begin{gathered}
y=\mathrm{A} x_{0}+\varepsilon \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|y-\mathrm{A} x\|_{2}^{2}+\lambda\|x\|_{1}, \lambda>0
\end{gathered}
$$

(BPDN/LASSO)

Theorem Let $I=\operatorname{supp}\left(x_{0}\right)$. Assume that A_{I} is full-rank and

$$
\eta_{F}=\mathrm{A}_{I}\left(\mathrm{~A}_{I}^{\top} \mathrm{A}_{I}\right)^{-1} \operatorname{sign}\left(\left(x_{0}\right)_{I}\right)
$$

is a non-degenerate dual certificate. Then, choosing

$$
c_{1}\|\varepsilon\|_{2}<\lambda<c_{2} \min _{i \in I}\left|\left(x_{0}\right)_{i}\right|
$$

(BPDN/LASSO) has a unique solution x^{\star} which moreover satisfies

$$
\operatorname{supp}\left(x^{\star}\right)=I \text { and } \operatorname{sign}\left(x^{\star}\right)=\operatorname{sign}\left(x_{0}\right) .
$$

- Almost necessary when x_{0} is non-trivial.

Take-away messages

- Convex relaxation is good for sparse recovery. Many (tight) guarantees with nice geometrical insight:
- Exact noiseless recovery.
- Stability without support recovery.
- Stable support recovery.
- Can we translate these conditions into sample complexity bounds ?
- Yes: random measurements (next lecture).

https://fadili.users.greyc.fr/

Thanks

Any questions?

