Sparsity and Compressed Sensing

Jalal Fadili

Normandie Université-ENSICAEN, GREYC

Mathematical coffees 2017

Recap: linear inverse problems

- Solution is not unique (fundamental theorem of linear algebra).
- Are we stuck ?
- No if the dimension of x is **intrinsically small**.

MC'17-4

Definition (Informal) $x \in \mathbb{R}^n$ is sparse iff $||x||_0 \ll n$.

Definition (Informal) $x \in \mathbb{R}^n$ is sparse iff $||x||_0 \ll n$.

Model of *s*-sparse vectors : a union of subspaces $\Sigma_s = \bigcup_i \{V_i = \operatorname{span} ((e_j)_{1 \le j \le n}) : \dim(V_i) = s\}.$

In nature, signals, images, information, are not (strongly) sparse.

In nature, signals, images, information, are not (strongly) sparse.

In nature, signals, images, information, are not (strongly) sparse.

In nature, signals, images, information, are not (strongly) sparse.

index

From now on, sparsity is intended in strong sense

What sparsity good for ?

- If $||x||_0 \le m$ and A_I is full-rank ($I \stackrel{\text{def}}{=} \operatorname{supp}(x)$), we are done.
 - Indeed, at least as many equations as unknowns :

$$y = A_I x_I.$$

- In practice, the support I is not known.
- \checkmark We have to infer it from the sole knowledge of y and A.

 $\min_{x \in \mathbb{R}^n} \|x\|_0 \quad \text{such that} \ y = \mathbf{A}x$

- Not convex, not even continuous.
- In fact, this is a combinatorial NP-hard problem.
- Can we find a viable alternative ?

Relaxation

Relaxation

Relaxation

Solve y = Ax where x is sparse

 $\min_{x \in \mathbb{R}^n} \|x\|_0 \quad \text{s.t. } y = Ax$ $m \stackrel{\text{(s.)}}{\longrightarrow} \text{Not convex.}$ Mot continuous. MP-hard. MP-hard. MP-hard.
Solve y = Ax where x is sparse

 $\min_{x \in \mathbb{R}^n} \|x\|_0 \text{ s.t. } y = Ax$ $m \underbrace{\sim}_{n} \underbrace{\sim}_{N \text{ot convex.}}$ $\underbrace{\sim}_{N \text{ot continuous.}}$ $\underbrace{\sim}_{N \text{P-hard.}}$ $\underbrace{\sim}_{N \text{P-hard.}}$ $\underbrace{\sim}_{N \text{P-hard.}}$

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Solve y = Ax where x is sparse

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Basis Pursuit
$$\min_{x \in \mathbb{R}^n} ||x||_1$$
 s.t. $y = Ax$ $\min_{x \in \mathbb{R}^n} ||x||_1$ s.t. $y = Ax$ $\min_{x \in \mathbb{R}^n} ||x||_{0.5}$ s.t. $y = Ax$ \bigcirc Continuous.
 \bigcirc Convex.
 \bigcirc Sparsest solution. \bigcirc Not convex.
 \bigcirc Continuous.
 \bigcirc Sparsest solution. $\min_{x \in \mathbb{R}^n} ||x||_2$ s.t. $y = Ax$ $\liminf_{x \in \mathbb{R}^n} ||x||_{1.5}$ s.t. $y = Ax$ \bigcirc Continuous.
 \bigcirc Convex.
 \bigcirc Dense (LS) solution $\liminf_{x \in \mathbb{R}^n} ||x||_{1.5}$ s.t. $y = Ax$

Tightest convex relaxation

Tightest convex relaxation

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad y = Ax \tag{BP}$$

Tightest convex relaxation

Error correction problem

Error correction problem

Find x from v = Bw + e

- A such that $span(B) \subset ker(A)$, i.e. AB = 0.
 - Multiply v by A :

$$y = Av = Ae.$$

Only a small fraction of corruptions means that e is sparse.
The original problem can be cast as

$$x^* \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \|x\|_1$$
 s.t. $y = Ax$
 $w^* = B^+ x^*$

MC'17-12

Question : when $x^* = e$ so that $w^* = w$? (see following talks).

Optimization algorithms

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad y = Ax \quad \text{(BP)}$$

- BP as a linear program :
 - Decompose x in its positive and negative part and lift in \mathbb{R}^{2n} :

$$\min_{z \in \mathbb{R}^{2n}} \sum_{i=1}^{2n} z_i \text{ s.t. } y = [A - A]z, \ z \ge 0.$$

Use your favourite LP solvers package : Cplex, Sedumi (IP), Mosek (IP), etc..

Recover
$$x^{\star} = (z_i^{\star})_{i=1}^n - (z_i^{\star})_{i=n+1}^{2n}$$

- High accuracy.
- Scaling with dimension n.
- Proximal splitting algorithms : DR, ADMM, Primal-Dual (MC of April 18th) :
 - Scale well with dimension : cost/iteration = O(mn) vector/matrix multiplication and O(n) soft-thresholding.

MC'17-13

Iterative methods : less accurate.

Recovery guarantees

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad y = \mathbf{A}x \quad (\mathsf{BP}$$

- Noiseless case $y = Ax_0$:
 - Solution When (BP) has a unique solution that is the sparsest vector x_0 ?
 - Uniform guarantees : which conditions ensure recovery of all s-sparse signals ?
 - Solution Non-uniform guarantees : which conditions ensure recovery of the s-sparse vector x_0 ?
 - Sample complexity bounds (random settings) : can we constrict sensing matrices s.t. the above conditions hold? What are the optimal scalings of the problem dimensions (n, m, s)?
 - Necessary conditions ?
 - Solution What if x_0 is only weakly sparse?

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0$$

(BPDN/LASSO)

- Noisy case $y = Ax_0 + \varepsilon$:
 - Study stability of (BPDN) solution(s) to the noise ε ?
 - \checkmark ℓ_2- stability :

Theorem (Typical statement) Under conditions XX, and choice $\lambda = c \|\varepsilon\|_2$, there exists C such that any solution x^* of (BPDN) obeys

$$\left\|x^{\star} - x_{0}\right\|_{2} \leq C \left\|\varepsilon\right\|_{2}.$$

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0$$

(BPDN/LASSO)

- Noisy case $y = Ax_0 + \varepsilon$:
 - Study stability of (BPDN) solution(s) to the noise ε ?
 - \checkmark ℓ_2- stability :

Theorem (Typical statement) Under conditions XX, and choice $\lambda = c \|\varepsilon\|_2$, there exists *C* such that any solution x^* of (BPDN) obeys

$$\left\|x^{\star} - x_{0}\right\|_{2} \le C \left\|\varepsilon\right\|_{2}.$$

Support and sign stability (more stringent) :

Theorem (Typical statement) Under conditions XXXX, and choice $\lambda = f(\|\varepsilon\|_2, \min_{i \in \text{supp}(x)} |x_i|)$, the unique solution x^* of (BPDN) obeys

 $\operatorname{supp}(x^{\star}) = \operatorname{supp}(x_0)$ and $\operatorname{sign}(x^{\star}) = \operatorname{sign}(x_0)$.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0$$

(BPDN/LASSO)

- Noisy case $y = Ax_0 + \varepsilon$:
 - Study stability of (BPDN) solution(s) to the noise ε ?
 - \checkmark ℓ_2- stability :

Theorem (Typical statement) Under conditions XX, and choice $\lambda = c \|\varepsilon\|_2$, there exists *C* such that any solution x^* of (BPDN) obeys

$$\left\|x^{\star} - x_{0}\right\|_{2} \le C \left\|\varepsilon\right\|_{2}.$$

Support and sign stability (more stringent) :

Theorem (Typical statement) Under conditions XXXX, and choice $\lambda = f(\|\varepsilon\|_2, \min_{i \in \text{supp}(x)} |x_i|)$, the unique solution x^* of (BPDN) obeys

 $\operatorname{supp}(x^{\star}) = \operatorname{supp}(x_0)$ and $\operatorname{sign}(x^{\star}) = \operatorname{sign}(x_0)$.

- Again uniform vs non-uniform guarantees.
- Sample complexity bounds (random settings) : can we constrict sensing matrices s.t. the above conditions hold? What are the optimal scalings of the problem dimensions (n, m, s)?
- Necessary conditions ?
- Solution What if x_0 is only weakly sparse?

In some applications, what matters is stability of the support

Guarantees from a geometrical perspective

Notions of convex analysis

Non-convex sets

Notions of convex analysis

Notions of convex analysis

Definition (Relative interior)

The relative interior ri(C) of a convex set C is its interior relative to aff(C).

Normal cone

Definition (Normal cone) The normal cone to a set C at $x \in C$ is

 $N_C(x) = \{ u \in \mathbb{R}^n : \langle u, z - x \rangle \le 0, \forall z \in C \}.$

Normal cone

Definition (Normal cone) The normal cone to a set C at $x \in C$ is

 $N_C(x) = \{ u \in \mathbb{R}^n : \langle u, z - x \rangle \le 0, \forall z \in C \}.$

Normal cone

Definition (Normal cone) The normal cone to a set C at $x \in C$ is

 $N_C(x) = \{ u \in \mathbb{R}^n : \langle u, z - x \rangle \le 0, \forall z \in C \}.$

Optimality conditions for (BP)

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad y = Ax \quad \text{(BP)}$$

Optimality conditions for (BP)

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad y = \mathbf{A}x \quad (\mathsf{BP})$$

$$\begin{aligned} x^{\star} &\in \operatorname{Argmin}_{x \in \mathbb{R}^{n}} \|x\|_{1} \quad \text{s.t.} \quad y = \operatorname{Ax} \\ &\Leftrightarrow 0 \in \partial \|x^{\star}\|_{1} + N_{\operatorname{ker}(\operatorname{A})}(x^{\star}) \xrightarrow{\mathcal{Y}} = Ax \\ &\Leftrightarrow 0 \in \partial \|x^{\star}\|_{1} + \operatorname{span}(\operatorname{A}^{\top}) \\ &\Leftrightarrow \operatorname{span}(\operatorname{A}^{\top}) \cap \partial \|x^{\star}\|_{1} \neq \emptyset \\ &\Leftrightarrow \exists \eta \in \mathbb{R}^{m} s.t. \begin{cases} \operatorname{A}_{I}^{\top} \eta = \operatorname{sign}(x_{I}^{\star}), \\ \|\operatorname{A}^{\top} \eta\|_{\infty} \leq 1. \end{cases} \xrightarrow{\operatorname{ker}(A)} \end{aligned}$$

Dual certificate

Definition The vector $\eta \in \mathbb{R}^m$ verifying the source condition $A^{ op}\eta \in \partial \|x_0\|_1$

is called a dual certificate associated to x_0 .

Non-degenerate dual certificate

Definition The vector $\eta \in \mathbb{R}^m$ verifying the source condition

 $\mathbf{A}^{\top} \eta \in \operatorname{ri}(\partial \| x_0 \|_1) \iff \mathbf{A}_I^{\top} \eta = \operatorname{sign}((x_0)_I) \text{ and } \| \mathbf{A}_{I^c}^{\top} \eta \|_{\infty} < 1.$

is called a non-degenerate dual certificate.

MC'17-23

 $I \stackrel{\text{\tiny def}}{=} \operatorname{supp}(x_0$

Non-degenerate dual certificate

Definition The vector $\eta \in \mathbb{R}^m$ verifying the source condition

$$\mathbf{A}^{\top} \eta \in \operatorname{ri}(\partial \|x_0\|_1) \iff \mathbf{A}_I^{\top} \eta = \operatorname{sign}((x_0)_I) \text{ and } \|\mathbf{A}_{I^c}^{\top} \eta\|_{\infty} < 1.$$

is called a non-degenerate dual certificate.

 $I \stackrel{\text{\tiny def}}{=} \operatorname{supp}(x_0$

Non-degenerate dual certificate

Definition The vector $\eta \in \mathbb{R}^m$ verifying the source condition

 $\mathbf{A}^{\top} \eta \in \operatorname{ri}(\partial \| x_0 \|_1) \iff \mathbf{A}_I^{\top} \eta = \operatorname{sign}((x_0)_I) \text{ and } \| \mathbf{A}_{I^c}^{\top} \eta \|_{\infty} < 1.$

 $I \stackrel{\text{\tiny def}}{=} \operatorname{supp}(x_0$

is called a non-degenerate dual certificate.

Restricted Injectivity

Assumption A_I is full column rank, where $I \stackrel{\text{\tiny def}}{=} \operatorname{supp}(x_0)$.

- A natural assumption.
- Assume noiseless case $y = Ax_0$
- Assume I is known, then

$$y = \mathbf{A}x_0 = \mathbf{A}_I(x_0)_I.$$

- No hope to recover x_0 uniquely, even knowing its support, if A_I has a kernel.
- All recovery conditions in the literature assume a form of restricted injectivity.

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad y = Ax \quad (BP)$$

Theorem Let $I = \operatorname{supp}(x_0)$. Assume that there exists a non-degenerate dual certificate at x_0 and A_I is full-rank. Then x_0 si the unique solution to (BP).

Even necessary when x_0 is non-trivial.

Stability without support recovery

$$y = Ax_0 + \varepsilon$$

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0$$
 (BPDN/LASSO)

Theorem Let $I = \operatorname{supp}(x_0)$. Assume that there exists a non-degenerate dual certificate η at x_0 and A_I is full-rank. Then, choosing $\lambda = c \|\varepsilon\|_2$, c > 0, any minimizer x^* of (BPDN/LASSO) obeys

$$||x^{\star} - x_0||_2 \le C(c, \mathbf{A}, I, \eta) ||\varepsilon||_2.$$

Stability without support recovery

$$y = Ax_0 + \varepsilon$$

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0$$
(BPDN/LASSO)

Theorem Let $I = \operatorname{supp}(x_0)$. Assume that there exists a non-degenerate dual certificate η at x_0 and A_I is full-rank. Then, choosing $\lambda = c \|\varepsilon\|_2$, c > 0, any minimizer x^* of (BPDN/LASSO) obeys

$$||x^{\star} - x_0||_2 \le C(c, \mathbf{A}, I, \eta) ||\varepsilon||_2.$$

 \checkmark Even necessary when x_0 is non-trivial.

Stable support and sign recovery

$$y = Ax_0 + \varepsilon$$
$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0 \quad (BPI)$$

Theorem Let $I = \operatorname{supp}(x_0)$. Assume that A_I is full-rank and

$$\eta_F = \mathcal{A}_I (\mathcal{A}_I^\top \mathcal{A}_I)^{-1} \operatorname{sign}((x_0)_I)$$

is a non-degenerate dual certificate. Then, choosing

$$c_1 \|\varepsilon\|_2 < \lambda < c_2 \min_{i \in I} |(x_0)_i|,$$

(BPDN/LASSO) has a unique solution x^* which moreover satisfies

$$\operatorname{supp}(x^{\star}) = I \text{ and } \operatorname{sign}(x^{\star}) = \operatorname{sign}(x_0).$$

Stable support and sign recovery

$$y = Ax_0 + \varepsilon$$
$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1, \ \lambda > 0$$
(BP)

Theorem Let $I = \operatorname{supp}(x_0)$. Assume that A_I is full-rank and

$$\eta_F = \mathcal{A}_I (\mathcal{A}_I^\top \mathcal{A}_I)^{-1} \operatorname{sign}((x_0)_I)$$

is a non-degenerate dual certificate. Then, choosing

$$c_1 \|\varepsilon\|_2 < \lambda < c_2 \min_{i \in I} |(x_0)_i|,$$

(BPDN/LASSO) has a unique solution x^* which moreover satisfies

$$\operatorname{supp}(x^{\star}) = I \text{ and } \operatorname{sign}(x^{\star}) = \operatorname{sign}(x_0).$$

Almost necessary when x_0 is non-trivial.

Take-away messages

- Convex relaxation is good for sparse recovery.
- Many (tight) guarantees with nice geometrical insight:
 - Exact noiseless recovery.
 - Stability without support recovery.
 - Stable support recovery.
- Can we translate these conditions into sample complexity bounds ?
- Yes: random measurements (next lecture).

https://fadili.users.greyc.fr/

Thanks Any questions ?