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Recap: linear inverse problems

2

A is fat (underdetermined system).

Solution is not unique (fundamental theorem of linear 
algebra).
Are we stuck ?
No if the dimension of x is intrinsically small. 
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Objects on this set 
have a low cost
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2-sparse = dense

Strong notion of sparsity

4

R2 R3

0-sparse
1-sparse

0-sparse
1-sparse
2-sparse
3-sparse = dense

Definition (Informal) x 2 Rn is sparse iff kxk0 ⌧ n.

(Not a norm : not positively homogenenous)

supp(x) = {i = 1, · · · , n : xi 6= 0}
kxk0 = #supp(x)

⌃s =
S

i {Vi = span ((ej)1jn) : dim(Vi) = s}.
Model of s-sparse vectors : a union of subspaces
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In nature, signals, images, information, are not (strongly) sparse.

Wavelet transform

|wavelet coefficients|
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Definition (Informal) x 2 Rn
is weakly

sparse iff |x(i)| decreases fast enough with

i.
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From now on, sparsity is 
intended in strong sense
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What sparsity good for ?
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If kxk0  m and AI is full-rank (I

def
= supp(x)), we are done.

Indeed, at least as many equations as unknowns :

y = AIxI .

In practice, the support I is not known.

We have to infer it from the sole knowledge of y and A.

Solve y = Ax where x is sparse
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Regularization
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Solve y = Ax where x is sparse

min
x2Rn

kxk0 such that y = Ax

y=Ax

1-sparse

Sparsest solution

2-sparse

Not convex, not even continuous.
In fact, this is a combinatorial NP-hard 
problem.
Can we find a viable alternative ?

m = 2
n = 3
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Tightest convex relaxation
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B`1 = ConvHull (B`0 \ B`2)

`1 is the tightest convex relaxation of `0

min
x2Rn

kxk1 s.t. y = Ax (BP)
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Error correction problem
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“Plaintext”Corrupted “ciphertext”

Error: small fraction 
of corruptions

b1b2

Codewords

bm

RmRn

n > m

Find x from v = Bw + e
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Error correction problem
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Find x from v = Bw + e

A such that span(B) ⇢ ker(A), i.e. AB = 0.

Multiply v by A :

y = Av = Ae.

Only a small fraction of corruptions means that e is sparse.

The original problem can be cast as

x

? 2 Argmin
x2Rn

kxk1 s.t. y = Ax

w

? = B+
x

?

Question : when x

? = e so that w? = w ? (see following talks).
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Optimization algorithms
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min
x2Rn

kxk1 s.t. y = Ax (BP)

BP as a linear program :

Decompose x in its positive and negative part and lift in R2n :

min
z2R2n

2nX

i=1

zi s.t. y = [A �A]z, z � 0.

Use your favourite LP solvers package : Cplex, Sedumi (IP), Mosek (IP),

etc..

Recover x? = (z?i )
n
i=1 � (z?i )

2n
i=n+1.

High accuracy.

Scaling with dimension n.

Proximal splitting algorithms : DR, ADMM, Primal-Dual (MC of April 18th) :

Scale well with dimension : cost/iteration = O(mn) vector/matrix multiplica-

tion and O(n) soft-thresholding.

Iterative methods : less accurate.
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Recovery guarantees
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min
x2Rn

kxk1 s.t. y = Ax (BP)

Noiseless case y = Ax0 :

When (BP) has a unique solution that is the sparsest vector x0 ?

Uniform guarantees : which conditions ensure recovery of all s-sparse si-

gnals ?

Non-uniform guarantees : which conditions ensure recovery of the s-sparse

vector x0 ?

Sample complexity bounds (random settings) : can we constrict sensing

matrices s.t. the above conditions hold ? What are the optimal scalings of

the problem dimensions (n,m, s) ?

Necessary conditions ?

What if x0 is only weakly sparse ?
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(BPDN/LASSO)

Noisy case y = Ax0 + " :

Study stability of (BPDN) solution(s) to the noise " ?

`2�stability :

min
x2Rn

1
2 ky �Axk22 + � kxk1 , � > 0

Theorem (Typical statement) Under conditions XX, and choice � = c k"k2, there exists C such that

any solution x

?
of (BPDN) obeys

kx? � x0k2  C k"k2 .
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Sensitivity/stability guarantees
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Original Recovered

Stable 
support

No stable
support but

stability `2

In some applications, what matters is stability of the support
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Guarantees from a 
geometrical perspective
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Convex sets Non-convex sets

0

C

a↵(C)

Definition (Relative interior)

The relative interior ri(C) of a convex set C is its interior relative to a↵(C).

C a↵(C) ri(C)

{x} {x} {x}
[x, x0] line generated by (x, x0) ]x, x0[

Simplex in Rn
Pn

i=1 xi = 1
Pn

i=1 xi = 1, xi 2]0, 1[
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0 x

|x|

epi(|·|)

Definition (Subdifferential) The subdifferential of a convex function at x 2 Rn
is the set of slopes of

affine functions minorizing f at x, i.e.

@f(x) = {u 2 Rn : 8z 2 Rn
, f(z) � f(x) + hu, z � xi} .
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0 x

|x|

epi(|·|)

@f(0) = [�1, 1]

@ kxk1 = "n
i=1@|xi|

= {u 2 Rn : uI = sign(xI), kuk1  1} .
I

def“ supppxq

Definition (Subdifferential) The subdifferential of a convex function at x 2 Rn
is the set of slopes of

affine functions minorizing f at x, i.e.

@f(x) = {u 2 Rn : 8z 2 Rn
, f(z) � f(x) + hu, z � xi} .

@f(x) = {�1}, x < 0

@f(x) = {1}, x > 0
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Definition (Normal cone) The normal cone to a set C at x 2 C is

NC(x) = {u 2 Rn : hu, z � xi  0, 8z 2 C} .
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C

NC(x)

Definition (Normal cone) The normal cone to a set C at x 2 C is

NC(x) = {u 2 Rn : hu, z � xi  0, 8z 2 C} .
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C

NC(x)

C =subspace V

NC(x) =subspace V

?

Definition (Normal cone) The normal cone to a set C at x 2 C is

NC(x) = {u 2 Rn : hu, z � xi  0, 8z 2 C} .
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min
x2Rn

kxk1 s.t. y = Ax (BP)

I

def
= supp(x?)

x

? 2 Argmin
x2Rn

kxk1 s.t. y = Ax

() 0 2 @ kx?k1 +Nker(A)(x
?)

() 0 2 @ kx?k1 + span(A>)

() span(A>) \ @ kx?k1 6= ;

() 9⌘ 2 Rm

s.t.

8
<

:
A>

I

⌘ = sign(x?

I

),
��A>

⌘

��
1  1.

ker(A)

A>⌘

y = A
x

x

?
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Dual certificate
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Definition The vector ⌘ 2 Rm
verifying the source condition

A>
⌘ 2 @ kx0k1

is called a dual certificate associated to x0.

ker(A)

A>⌘

y = A
x

x0
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Non-degenerate dual certificate

23

I

def
= supp(x0)

Definition The vector ⌘ 2 Rm
verifying the source condition

A>
⌘ 2 ri(@ kx0k1) () A>

I ⌘ = sign((x0)I) and

��A>
Ic⌘

��
1 <1.

is called a non-degenerate dual certificate.
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Non-degenerate dual certificate

23

✔ ︎
ker(A)

A>⌘

y = A
x

x0

I

def
= supp(x0)

Definition The vector ⌘ 2 Rm
verifying the source condition

A>
⌘ 2 ri(@ kx0k1) () A>

I ⌘ = sign((x0)I) and

��A>
Ic⌘

��
1 <1.

is called a non-degenerate dual certificate.
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Non-degenerate dual certificate
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A>
⌘ hits the relative boundary

() {x : y = Ax} tangent to a higher dimensional face of x0

() non-unique solution

✔ ︎
ker(A)

A>⌘

y = A
x

x0

ker(A)

A>⌘

y

=
A
x

✘

x0

I

def
= supp(x0)

Definition The vector ⌘ 2 Rm
verifying the source condition

A>
⌘ 2 ri(@ kx0k1) () A>

I ⌘ = sign((x0)I) and

��A>
Ic⌘

��
1 <1.

is called a non-degenerate dual certificate.



MC’17-

Restricted Injectivity

24

Assumption AI is full column rank, where I

def

= supp(x0).

A natural assumption.

Assume noiseless case y = Ax0

Assume I is known, then

y = Ax0 = AI(x0)I .

No hope to recover x0 uniquely, even knowing its support, if AI has a kernel.

All recovery conditions in the literature assume a form of restricted injectivity.
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Exact recovery

25

min
x2Rn

kxk1 s.t. y = Ax (BP)

Theorem Let I = supp(x0) . Assume that there exists a non-degenerate dual certi-

ficate at x0 and AI is full-rank. Then x0 si the unique solution to (BP).

Even necessary when x0 is non-trivial.
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Stability without support recovery

26

Theorem Let I = supp(x0). Assume that there exists a non-degenerate dual certi-

ficate ⌘ at x0 and AI is full-rank. Then, choosing � = c k"k2, c > 0, any minimizer x?

of (BPDN/LASSO) obeys

kx? � x0k2  C(c,A, I, ⌘) k"k2 .

y = Ax0 + "

(BPDN/LASSO)min
x2Rn

1
2 ky �Axk22 + � kxk1 , � > 0
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Theorem Let I = supp(x0). Assume that there exists a non-degenerate dual certi-

ficate ⌘ at x0 and AI is full-rank. Then, choosing � = c k"k2, c > 0, any minimizer x?

of (BPDN/LASSO) obeys

kx? � x0k2  C(c,A, I, ⌘) k"k2 .

y = Ax0 + "

(BPDN/LASSO)min
x2Rn

1
2 ky �Axk22 + � kxk1 , � > 0

Even necessary when x0 is non-trivial.
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y = Ax0 + "

(BPDN/LASSO)min
x2Rn

1
2 ky �Axk22 + � kxk1 , � > 0

Theorem Let I = supp(x0). Assume that AI is full-rank and

⌘F = AI(A
>
I AI)

�1sign((x0)I)

is a non-degenerate dual certificate. Then, choosing

c1 k"k2 < � < c2 min
i2I

|(x0)i| ,

(BPDN/LASSO) has a unique solution x

? which moreover satisfies

supp(x?) = I and sign(x?) = sign(x0).



MC’17-

Stable support and sign recovery

27

y = Ax0 + "

(BPDN/LASSO)min
x2Rn

1
2 ky �Axk22 + � kxk1 , � > 0

Almost necessary when x0 is non-trivial.

Theorem Let I = supp(x0). Assume that AI is full-rank and

⌘F = AI(A
>
I AI)

�1sign((x0)I)

is a non-degenerate dual certificate. Then, choosing

c1 k"k2 < � < c2 min
i2I

|(x0)i| ,

(BPDN/LASSO) has a unique solution x

? which moreover satisfies

supp(x?) = I and sign(x?) = sign(x0).
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Convex relaxation is good for sparse recovery.
Many (tight) guarantees with nice geometrical insight:

Exact noiseless recovery.
Stability without support recovery.
Stable support recovery.

Can we translate these conditions into sample 
complexity bounds ? 
Yes: random measurements (next lecture).
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https://fadili.users.greyc.fr/

Thanks
Any questions ?

http://www.greyc.ensicaen.fr/~jfadili
http://www.greyc.ensicaen.fr/~jfadili

