Least Squares and Linear Systems

Gabriel Peyré

Mathematica Coffees

Huawei-FSMP joint seminars athematical-coffees.github.io

Organized by: Mérouane Debbah & Gabriel Peyré

Geodesics

Neuro-imaging

Meshes

Patches

Optimization

nces

Paris

Parallel/Stochastic

Jalal Fadili, ENSICaen. Alexandre Gramfort, INRIA. Matthieu Kowalski, Supelec. Jean-Marie Mirebeau, CNRS, P-Sud.

Alexandre Allauzen, Paris-Sud. Pierre Alliez, INRIA. Guillaume Charpiat, INRIA. Emilie Chouzenoux, Paris-Est.

Sparsity

Nicolas Courty, IRISA. Laurent Cohen, CNRS Dauphine. Marco Cuturi, ENSAE. Julie Delon, Paris 5.

Fabian Pedregosa, INRIA. Guillaume Lecué, CNRS ENSAE Julien Tierny, CNRS and P6. Robin Ryder, Paris-Dauphine. Gael Varoguaux, INRIA.

Regression Problems

(Noisy) observations $(t_i, y_i)_{i=1}^m$, try to infer $y \approx f(t)$. $f : \mathbb{R} \to \mathbb{R}$ (extend to any dimension)

Expansion in a dictionary $(\varphi_j)_{j=1}^n$:

 $f(t) \stackrel{\text{def.}}{=} \sum_{j=1}^{n} x_j \varphi_j(t)$ Polynomials: $\varphi_j(t) = t^{k_j}$. Fourier: $\varphi_j(t) = e^{i\omega_j t}$. Wavelets: $\varphi_j(t) = \psi\left(\frac{t-2^{s_j}n_j}{2^{s_j}}\right)$.

Regression Problems

(Noisy) observations $(t_i, y_i)_{i=1}^m$, try to infer $y \approx f(t)$. $f : \mathbb{R} \to \mathbb{R}$ (extend to any dimension)

Expansion in a dictionary $(\varphi_j)_{j=1}^n$:

F

 $f(t) \stackrel{\text{def.}}{=} \sum_{j=1}^{n} x_{j} \varphi_{j}(t)$ Polynomials: $\varphi_{j}(t) = t^{k_{j}}$.
Fourier: $\varphi_{j}(t) = e^{i\omega_{j}t}$.
Wavelets: $\varphi_{j}(t) = \psi\left(\frac{t-2^{s_{j}}n_{j}}{2^{s_{j}}}\right)$.

Forward model:

$$y_{i} = f(t_{i}) + w_{i}$$

$$y = A \ x + w \in \mathbb{R}^{m}$$
Observations
Dictionary
Coefficients
Residual
$$A \in \mathbb{R}^{m \times n} : \mathbb{R}^{n} \to \mathbb{R}^{m}$$

$$A_{i,j} \stackrel{\text{def.}}{=} \varphi_{j}(t_{i})$$

Inpainting: set Ω of available pixels, $m = |\Omega|, Ax = (x_i)_{i \in \Omega}$

Inverse Problem in Medical Imaging

Tomography projection: $Ax = (p_{\theta_k})_{k=1}^K$

Inverse Problem in Medical Imaging

Tomography projection: $Ax = (p_{\theta_k})_{k=1}^K$

Magnetic resonance imaging (MRI): $Ax = (\hat{x}(\omega))_{\omega \in \Omega}$

Inverse Problem in Medical Imaging

Tomography projection: $Ax = (p_{\theta_k})_{k=1}^K$

Magnetic resonance imaging (MRI): $Ax = (\hat{x}(\omega))_{\omega \in \Omega}$

Other examples: MEG, EEG, ...

	Solving	$y {\approx} A x \in \mathbb{R}^{n}$	$^m \qquad A \in \mathbb{R}^{m \times m}$	imes n	
Determine	d $(m = n)$:	$x = A^{-}$	-1 <i>y</i>	y = A	$\times x$
Over-deter	mined $(m >$	n): $\min_{x} \ \mathbf{A} \ $	$ x - y ^2$	$\frac{1}{y} = A$	

$$x = (A^{\top}A)^{-1}A^{\top}y \stackrel{\text{\tiny def.}}{=} A^{+}y$$

	Solving	$y \equiv x$	$\mathbf{A} x \in \mathbb{R}^m$	$A \in \mathbb{R}^{m}$	$n \times n$		
Determine	d $(m = n)$:		$x = A^{-1}y$		y =	A	$\times x$
Over-deter	$rmined (m > a = (A^{\top}A)^{-1}$	$(\cdot n):$	$\min_{x} \ Ax - Ax\ = A^+ y$	$\ \mathbf{y} \ ^2$	y =	$A \times x$	

Under-determined (m < n): $\min_{x} \{ \|x\| ; Ax = y \}$ $x = A^{\top} (AA^{\top})^{-1} y \stackrel{\text{def.}}{=} A^{+} y$

Solving	${\color{black} {\boldsymbol{y}} \underset{pprox}{=} {\boldsymbol{A}} \ x \in \mathbb{R}^m}$	$A \in \mathbb{R}^{m imes n}$	
Determined $(m = n)$	$: \qquad x = A^{-1}y$		y = A imes x
Over-determined $(m x = (A^{\top}A)^{\top}$	$> n): \min_{x} \ Ax - y\ \\ -1 A^{\top} y \stackrel{\text{def.}}{=} A^{+} y$	$y ^2$	$y = A \times x$

Under-determined (m < n): $\min_{x \to \infty} \{ \|x\| ; Ax = y \}$ $x = A^{\top} (AA^{\top})^{-1} y \stackrel{\text{def.}}{=} A^{+} y$

A ill-posed and/or noise: $\min_{x} \|Ax - y\|^2 + \lambda \|x\|^2$ $x = (A^{\top}A + \lambda \mathrm{Id}_n)^{-1}A^{\top}y \xrightarrow{\lambda \to 0} A^+y$

 $= \mathbf{A}^{\top} (\mathbf{A}\mathbf{A}^{\top} + \lambda \mathrm{Id}_m)^{-1} \mathbf{y} \quad (\text{Woodbury identity})$

Linear Solver

$$x = (A^{\top}A + \lambda \mathrm{Id}_{n})^{-1}A^{\top}y = A^{\top}(AA^{\top} + \lambda \mathrm{Id}_{m})^{-1}y$$

If $n < m$ (over-determined) If $m < n$
(under-determined)
Need to solve: $(A^{\top}A + \lambda \mathrm{Id}_{n})x = A^{\top}y$
S symmetric, positive

Linear Solver

$$x = (A^{\top}A + \lambda \mathrm{Id}_{n})^{-1}A^{\top}y = A^{\top}(AA^{\top} + \lambda \mathrm{Id}_{m})^{-1}y$$

If $n < m$ [If $m < n$
(over-determined) If $m < n$
(under-determined)
Need to solve: $(A^{\top}A + \lambda \mathrm{Id}_{n})x = A^{\top}y$
S symmetric, positive

Direct methods:

- Cholesky factorization $S = LL^{\top}$
- QR factorization $A = QR \rightarrow S = R^{\top}R + \lambda \mathrm{Id}_n$
- Singular Value Decomposition $A = U \operatorname{diag}(\Lambda) V^{\top}$

slower (2x) more stable
slower more general

Linear Solver

$$x = (A^{\top}A + \lambda \mathrm{Id}_{n})^{-1}A^{\top}y = A^{\top}(AA^{\top} + \lambda \mathrm{Id}_{m})^{-1}y$$

If $n < m$ (over-determined) If $m < n$
(under-determined)
Need to solve: $(A^{\top}A + \lambda \mathrm{Id}_{n})x = A^{\top}y$
S symmetric, positive

Direct methods:

- Cholesky factorization $S = LL^{\top}$
- QR factorization $A = QR \rightarrow S = R^{\top}R + \lambda \mathrm{Id}_n \prec \operatorname{slower}^{+}$ more stable slower
- Singular Value Decomposition $A = U \operatorname{diag}(\Lambda) V$

slower (2x)more general

Iterative methods:

– Conjugate gradient: < as an exact method: even slower ... use it for sparse A

Convergence rate: $\|x_k - x^*\|_S \leq 2\left(\frac{\sqrt{\kappa(S)} - 1}{\sqrt{\kappa(S)} + 1}\right)^k \|x_0 - x^*\|_S$ \rightarrow preconditioning is important (for small λ).

What's Next

Jalal Fadili: sparse regularization, ℓ^0, ℓ^1 .

Guillaume Lecué: compressed sensing, random matrices.

What's Next

Jalal Fadili: sparse regularization, ℓ^0, ℓ^1 .

Guillaume Lecué: compressed sensing, random matrices.

