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• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com



Optimal Transport
Geodesics
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data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree
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FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.
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Inverse Problems
Forward model:

Observations Operator Noise(Unknown)
Input

y = A f + w 2 Rm

A 2 Rm⇥p : Rp ! Rm
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Inverse Problems

Inpainting: set ⌦ of available pixels, m = |⌦|,

A

Forward model:

Observations Operator Noise(Unknown)
Input

y = A f + w 2 Rm

Af = (fi)i2⌦

A 2 Rm⇥p : Rp ! Rm

Denoising: A = Idp, m = p

Super-resolution: Af = (f ? k) #⌧ , m = p/⌧ .
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Inverse Problems

Inpainting: set ⌦ of available pixels, m = |⌦|,

A

Forward model:

Observations Operator Noise(Unknown)
Input

y

Compressed sensing:

y = A f + w 2 Rm

Af = (fi)i2⌦

A 2 Rm⇥p : Rp ! Rm

Denoising: A = Idp, m = p

Super-resolution: Af = (f ? k) #⌧ , m = p/⌧ .

A 2 Rm⇥p
random.



Inverse Problem in Medical Imaging
Af = (p✓k)

K
k=1

Image f



Magnetic resonance imaging (MRI):

Other examples: MEG, EEG, . . .

Inverse Problem in Medical Imaging

x̂

x

Af = (p✓k)
K
k=1

Image f

Af = (f̂(!))!2⌦



Regression in Statistical Learning

y

(Noisy) observations (xi, yj), try to infer y = f(x).

x

(xi, yi)
y = f(x)

Regression (x, y) 2 Rp ⇥ R
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Regression in Statistical Learning

y

(Noisy) observations (xi, yj), try to infer y = f(x).

x

(xi, yi)
y = f(x)

Regression

x

y y = hf, xi
Linear models:

8 i = 1, . . . , n, yi = hxi, fi+ "i
noise

model error

(x, y) 2 Rp ⇥ R
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Regression in Statistical Learning

y

(Noisy) observations (xi, yj), try to infer y = f(x).

x

(xi, yi)
y = f(x)

Regression

x

y y = hf, xi
Linear models:

8 i = 1, . . . , n, yi = hxi, fi+ "i
noise

model error

Empirical design matrix: X =
xi

xi0
n

p

(x, y) 2 Rp ⇥ R
x

xi
xj

fj = 1

f(x) = 0

fi = �1

Classification

(x, y) 2 Rp ⇥ {�1, 1}

Model: y = Xf + " 2 Rn y=
⇥

X
f



Inverse Problems vs. Statistical Learning
Inverse Problems

Statistical Learning

y = Af + w y = Xf + "A y

=
hf,

x

i
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Inverse Problems

Statistical Learning
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Inverse Problems vs. Statistical Learning
Inverse Problems

Statistical Learning
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Inverse Problems

Statistical Learning
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Deterministic bounded noise r
Random noise rn

Noise level

Noise level

Exact covariance C
Noisy covariance Cn

||r|| ||rn|| ⇠ n� 1
2



Theory: Convergence Rates
Inverse Problems

Statistical Learning

y = Af0 + w
y = Xf0 + "
yi = hxi, fi+ "i i.i.d.



Theory: Convergence Rates
Inverse Problems

Statistical Learning

y = Af0 + w
y = Xf0 + "
yi = hxi, fi+ "i i.i.d.

Source condition: 9z, f0 = �⇤z
�! smoothness constraint.

�! f0? ker(�)

“no free lunch”
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Theory: Convergence Rates
Inverse Problems

Statistical Learning

y = Af0 + w
y = Xf0 + "
yi = hxi, fi+ "i i.i.d.

Source condition: 9z, f0 = �⇤z
�! smoothness constraint.

�! f0? ker(�)

Theorem: setting � ⇠ n� 1
2 ,

E(||f�,n � f0||) ⇠ n� 1
4

E(|hf � f0, xi|) ⇠ n

� 1
2

Needs non-quadratic &

non-smooth regularization

(`1, TV, trace norm, . . . )

“no free lunch”

Theorem: setting � ⇠ ||w||,
||f� � f0|| ⇠

p
||w||

||Af� �Af0|| ⇠ ||w||

Super-resolution e↵ect

(recover information in ker(�))

Faster O(||w||, n� 1
2
) estimation rates



L2 vs. L1 Regularization

Observations y
Columns of A C = A>A



L2 vs. L1 Regularization

Observations y
Columns of A

�

minf ||y �Af ||2 + �||f ||22

C = A>A



L2 vs. L1 Regularization

Observations y
Columns of A

�

minf ||y �Af ||2 + �||f ||22

�

minf ||y �Af ||2 + �||f ||1

C = A>A



What’s Next

Alexandre Gramfort: ML for classification.

Gael Varoquaux:


