Gabriel Peyré

www.numerical-tours.com

Organized by: Mérouane Debbah & Gabriel Peyré

Parallel/Stochastic

Alexandre Allauzen, Paris-Sud. Pierre Alliez, INRIA. Guillaume Charpiat, INRIA. Emilie Chouzenoux, Paris-Est.

Nicolas Courty, IRISA. Laurent Cohen, CNRS Dauphine. Marco Cuturi, ENSAE. Julie Delon, Paris 5.

Fabian Pedregosa, INRIA. Guillaume Lecué, CNRS ENSAE Julien Tierny, CNRS and P6. Robin Ryder, Paris-Dauphine. Gael Varoquaux, INRIA.

Jalal Fadili, ENSICaen. Alexandre Gramfort, INRIA. Matthieu Kowalski, Supelec. Jean-Marie Mirebeau, CNRS,P-Sud.

Inverse Problems

Inverse Problems

Denoising:
$$A = \mathrm{Id}_p$$
, $m = p$

Inpainting: set
$$\Omega$$
 of available pixels, $m = |\Omega|$, $Af = (f_i)_{i \in \Omega}$

Super-resolution:
$$Af = (f \star k) \downarrow_{\tau}, m = p/\tau.$$

Inverse Problems

Denoising: $A = \mathrm{Id}_p$, m = p

Inpainting: set Ω of available pixels, $m = |\Omega|$, $Af = (f_i)_{i \in \Omega}$

Super-resolution:
$$Af = (f \star k) \downarrow_{\tau}, m = p/\tau.$$

Inverse Problem in Medical Imaging

Tomography projection:

$$Af = (p_{\theta_k})_{k=1}^K$$

Inverse Problem in Medical Imaging

$$Af = (p_{\theta_k})_{k=1}^K$$

Magnetic resonance imaging (MRI): $Af = (\hat{f}(\omega))_{\omega \in \Omega}$

Other examples: MEG, EEG, ...

(Noisy) observations (x_i, y_j) , try to infer y = f(x).

(Noisy) observations (x_i, y_j) , try to infer y = f(x).

(Noisy) observations (x_i, y_j) , try to infer y = f(x).

Linear models: $\forall i = 1, ..., n, \quad y_i = \langle x_i, f \rangle + \varepsilon_i$ model error

(Noisy) observations (x_i, y_j) , try to infer y = f(x).

Linear models: $\forall i = 1, ..., n, \quad y_i = \langle x_i, f \rangle + \varepsilon_i$ model error

Empirical design matrix: X =

Model:
$$y = Xf + \varepsilon \in \mathbb{R}^n$$

Inverse Problems

$$y = Af + w$$

$$y = Xf + \varepsilon$$

Inverse Problems

$$y = Af + w$$

$$A^{\top}y = (A^{\top}A)f + A^{\top}w$$

$$\stackrel{\text{def.}}{=} u \stackrel{\text{def.}}{=} C \stackrel{\text{def.}}{=} r$$

$$y = Xf + \varepsilon$$

$$\frac{1}{n}X^{\top}y = \frac{1}{n}(X^{\top}X)f + \frac{1}{n}X^{\top}\varepsilon$$

$$\stackrel{\text{def.}}{=} u_n \stackrel{\text{def.}}{=} C_n \stackrel{\text{def.}}{=} r_n$$

Inverse Problems

$$y = Xf + \varepsilon$$

$$\frac{1}{n}X^{\top}y = \frac{1}{n}(X^{\top}X)f + \frac{1}{n}X^{\top}\varepsilon$$

$$\stackrel{\text{def.}}{=} u_n \qquad \stackrel{\text{def.}}{=} C_n \qquad \stackrel{\text{def.}}{=} r_n$$

$$\downarrow n \to +\infty \qquad \downarrow (x_i, y_i)_i \text{ i.i.d.}$$

$$u = \mathbb{E}(yx) \quad C = \mathbb{E}(xx^{\top})$$

Inverse Problems

$$y = Af + w$$

$$A^{\top}y = (A^{\top}A)f + A^{\top}w$$

$$\stackrel{\text{def.}}{=} u \stackrel{\text{def.}}{=} C \stackrel{\text{def.}}{=} r$$

Regularized inversion:

$$\min_{f} \frac{1}{2} ||Af - y||^2 + \lambda ||f||^2$$
$$f_{\lambda} = (C + \lambda \operatorname{Id}_p)^{-1} u$$

Statistical Learning

$$y = Xf + \varepsilon$$

$$\frac{1}{n}X^{\top}y = \frac{1}{n}(X^{\top}X)f + \frac{1}{n}X^{\top}\varepsilon$$

$$\stackrel{\text{def.}}{=} u_n \qquad \stackrel{\text{def.}}{=} C_n \qquad \stackrel{\text{def.}}{=} r_n$$

$$\downarrow n \to +\infty \qquad \downarrow (x_i, y_i)_i \text{ i.i.d.}$$

$$u = \mathbb{E}(yx) \quad C = \mathbb{E}(xx^{\top})$$

Empirical risk minimization:

$$\min_{f} \frac{1}{2n} ||Xf - y||^2 + \lambda ||f||^2$$
$$f_{\lambda,n} = (C_n + \lambda \operatorname{Id}_p)^{-1} u_n$$

Inverse Problems

$$y = Af + w$$

$$A^{\top}y = (A^{\top}A)f + A^{\top}w$$

$$\stackrel{\text{def.}}{=} u \stackrel{\text{def.}}{=} C \stackrel{\text{def.}}{=} r$$

Regularized inversion:

$$\min_{f} \frac{1}{2} ||Af - y||^2 + \lambda ||f||^2$$
$$f_{\lambda} = (C + \lambda \operatorname{Id}_p)^{-1} u$$

Exact covariance C

Deterministic bounded noise $r \leftarrow$

Noise level ||r||

Statistical Learning

$$y = Xf + \varepsilon$$

$$\frac{1}{n}X^{\top}y = \frac{1}{n}(X^{\top}X)f + \frac{1}{n}X^{\top}\varepsilon$$

$$\stackrel{\text{def.}}{=} u_n \stackrel{\text{def.}}{=} C_n \stackrel{\text{def.}}{=} r_n$$

$$\downarrow n \to +\infty \qquad \downarrow (x_i, y_i)_i \text{ i.i.d.}$$

$$u = \mathbb{E}(yx) \quad C = \mathbb{E}(xx^{\top})$$

Empirical risk minimization:

$$\min_{f} \frac{1}{2n} ||Xf - y||^2 + \lambda ||f||^2$$
$$f_{\lambda,n} = (C_n + \lambda \operatorname{Id}_p)^{-1} u_n$$

Noisy covariance C_n

 \rightarrow Random noise r_n

- Noise level $||r_n|| \sim n^{-\frac{1}{2}}$

Inverse Problems

$$y = Af_0 + w$$

$$y_i = \langle x_i, f \rangle + \varepsilon_i$$
 i.i.d. $y = X f_0 + \varepsilon$

Inverse Problems

$$y = Af_0 + w$$

Statistical Learning

$$y_i = \langle x_i, f \rangle + \varepsilon_i$$
 i.i.d. $y = X f_0 + \varepsilon$

Source condition:
$$\exists z, f_0 = \Phi^* z$$

 \longrightarrow smoothness constraint.

 $\longrightarrow f_0 \perp \ker(\Phi)$

"no free lunch"

Inverse Problems

$$y = Af_0 + w$$

Statistical Learning

$$y_i = \langle x_i, f \rangle + \varepsilon_i$$
 i.i.d. $y = X f_0 + \varepsilon$

Source condition:
$$\exists z, \quad f_0 = \Phi^* z$$

 \longrightarrow smoothness constraint.

$$\longrightarrow f_0 \perp \ker(\Phi)$$

"no free lunch"

Theorem: setting
$$\lambda \sim \|w\|$$
,
$$\|f_{\lambda} - f_{0}\| \sim \sqrt{\|w\|}$$
$$\|Af_{\lambda} - Af_{0}\| \sim \|w\|$$

Inverse Problems

$$y = Af_0 + w$$

Statistical Learning

$$y_i = \langle x_i, f \rangle + \varepsilon_i$$
 i.i.d. $y = X f_0 + \varepsilon$

Source condition:
$$\exists z, \quad f_0 = \Phi^* z$$

 \longrightarrow smoothness constraint.

$$\longrightarrow f_0 \perp \ker(\Phi)$$

"no free lunch"

Theorem: setting
$$\lambda \sim \|w\|$$
,
$$\|f_{\lambda} - f_{0}\| \sim \sqrt{\|w\|}$$
$$\|Af_{\lambda} - Af_{0}\| \sim \|w\|$$

Theorem: setting
$$\lambda \sim n^{-\frac{1}{2}}$$
,
$$\mathbb{E}(\|f_{\lambda,n} - f_0\|) \sim n^{-\frac{1}{4}}$$
$$\mathbb{E}(|\langle f - f_0, x \rangle|) \sim n^{-\frac{1}{2}}$$

Inverse Problems

$$y = Af_0 + w$$

Statistical Learning

$$y_i = \langle x_i, f \rangle + \varepsilon_i$$
 i.i.d. $y = X f_0 + \varepsilon$

Source condition:
$$\exists z, \quad f_0 = \Phi^* z$$

 \longrightarrow smoothness constraint.

$$\longrightarrow f_0 \perp \ker(\Phi)$$

"no free lunch"

Theorem: setting
$$\lambda \sim \|w\|$$
,
$$\|f_{\lambda} - f_{0}\| \sim \sqrt{\|w\|}$$
$$\|Af_{\lambda} - Af_{0}\| \sim \|w\|$$

Theorem: setting $\lambda \sim n^{-\frac{1}{2}}$,

$$\mathbb{E}(\|f_{\lambda,n} - f_0\|) \sim n^{-\frac{1}{4}}$$

$$\mathbb{E}(|\langle f - f_0, x \rangle|) \sim n^{-\frac{1}{2}}$$

Faster $O(\|w\|, n^{-\frac{1}{2}})$ estimation rates Super-resolution effect

(recover information in $\ker(\Phi)$)

Needs non-quadratic & non-smooth regularization $(\ell_1, \text{TV}, \text{trace norm}, \dots)$

L2 vs. L1 Regularization

L2 vs. L1 Regularization

L2 vs. L1 Regularization

What's Next

Alexandre Gramfort: ML for classification.

dimensionality