Inverse Problems meets
 Statistical Learning

Gabriel Peyré

www. numerical-tours.com

Organized by: Mérouane Debbah \& Gabriel Peyré

Alexandre Allauzen, Paris-Sud. Pierre Alliez, INRIA. Guillaume Charpiat, INRIA. Emilie Chouzenoux, Paris-Est.

Nicolas Courty, IRISA. Laurent Cohen, CNRS Dauphine. Marco Cuturi, ENSAE. Julie Delon, Paris 5.

Fabian Pedregosa, INRIA. Guillaume Lecué, CNRS ENSAE Julien Tierny, CNRS and P6. Robin Ryder, Paris-Dauphine. Gael Varoquaux, INRIA.

Jalal Fadili, ENSICaen.
Alexandre Gramfort, INRIA.
Matthieu Kowalski, Supelec. Jean-Marie Mirebeau, CNRS,P-Sud.

Inverse Problems

Forward model: $y=A f+w \in \mathbb{R}^{m}$

Inverse Problems

Forward model:

Denoising: $A=\mathrm{Id}_{p}, m=p$
Inpainting: set Ω of available pixels, $m=|\Omega|, \quad A f=\left(f_{i}\right)_{i \in \Omega}$
Super-resolution: $A f=(f \star k) \downarrow_{\tau}, m=p / \tau$.

Inverse Problems

Forward model:

$$
\begin{aligned}
& \text { Observations } \begin{array}{c}
\text { Operator } \\
\qquad A \in \mathbb{R}^{m \times p}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m} \text { Inkut }
\end{array} \text { Invown) Noise }
\end{aligned}
$$

Denoising: $A=\operatorname{Id}_{p}, m=p$
Inpainting: set Ω of available pixels, $m=|\Omega|, \quad A f=\left(f_{i}\right)_{i \in \Omega}$
Super-resolution: $A f=(f \star k) \downarrow_{\tau}, m=p / \tau$.

Inverse Problem in Medical Imaging

Tomography projection:

$$
A f=\left(p_{\theta_{k}}\right)_{k=1}^{K}
$$

Inverse Problem in Medical Imaging

Tomography projection:

$A f=\left(p_{\theta_{k}}\right)_{k=1}^{K}$

Magnetic resonance imaging (MRI): $A f=(\hat{f}(\omega))_{\omega \in \Omega}$

Other examples: MEG, EEG, ...

Regression in Statistical Learning

(Noisy) observations $\left(x_{i}, y_{j}\right)$, try to infer $y=f(x)$.

Regression $(x, y) \in \mathbb{R}^{p} \times \mathbb{R}$

Regression in Statistical Learning

(Noisy) observations $\left(x_{i}, y_{j}\right)$, try to infer $y=f(x)$.

Regression $(x, y) \in \mathbb{R}^{p} \times \mathbb{R}$

Classification $(x, y) \in \mathbb{R}^{p} \times\{-1,1\}$

Regression in Statistical Learning

(Noisy) observations $\left(x_{i}, y_{j}\right)$, try to infer $y=f(x)$.

Regression $(x, y) \in \mathbb{R}^{p} \times \mathbb{R}$

Linear models: $\quad \forall i=1, \ldots, n, \quad y_{i}=\left\langle x_{i}, f\right\rangle+\varepsilon_{i}$
model error

Regression in Statistical Learning

(Noisy) observations $\left(x_{i}, y_{j}\right)$, try to infer $y=f(x)$.

Regression $(x, y) \in \mathbb{R}^{p} \times \mathbb{R}$

Classification $(x, y) \in \mathbb{R}^{p} \times\{-1,1\}$

$$
\begin{aligned}
& f_{i}=-1 \\
& f_{j}=1
\end{aligned}
$$

Linear models: $\quad \forall i=1, \ldots, n, \quad y_{i}=\left\langle x_{i}, f\right\rangle+\varepsilon_{i}$ model error

Empirical design matrix:

Model: $y=X f+\varepsilon \in \mathbb{R}^{n}$

Inverse Problems vs. Statistical Learning

Inverse Problems
$y=A f+w$

Statistical Learning
$y=X f+\varepsilon$

Inverse Problems vs. Statistical Learning

$$
\begin{gathered}
\text { Inverse Problems } \\
y=A f+w \\
A^{\top} y=\left(A^{\top} A\right) f+A^{\top} w \\
\stackrel{\text { def. }}{=} u \stackrel{\text { def. }}{=} C
\end{gathered}
$$

Statistical Learning

$$
y=X f+\varepsilon
$$

$$
\begin{aligned}
& \frac{1}{n} X^{\top} y= \frac{1}{n}\left(X^{\top} X\right) f+\frac{1}{n} X^{\top} \varepsilon \\
& \stackrel{\text { def. }}{=} u_{n} \stackrel{\text { def. }}{=} C_{n} \\
& \stackrel{\text { def. }}{=} r_{n}
\end{aligned}
$$

Inverse Problems vs. Statistical Learning

$$
\begin{gathered}
\text { Inverse Problems } \\
y=A f+w \\
A^{\top} y=\left(A^{\top} A\right) f+A^{\top} w \\
\stackrel{\text { def. }}{=} u \stackrel{\text { def. }}{=} C
\end{gathered}
$$

Statistical Learning

$$
y=X f+\varepsilon
$$

$$
\begin{gathered}
\frac{1}{n} X^{\top} y=\frac{1}{n}\left(X^{\top} X\right) f+\frac{1}{n} X^{\top} \varepsilon \\
\stackrel{\text { def. }}{\text { def. }} u_{n} \quad \stackrel{\text { def. }}{=} r_{n} \\
\downarrow n \rightarrow+\infty \quad \downarrow \quad\left(x_{i}, y_{i}\right)_{i} \text { i.i.d. } \\
\quad u_{n} \\
u=\mathbb{E}(y x) \quad C=\mathbb{E}\left(x x^{\top}\right)
\end{gathered}
$$

Inverse Problems vs. Statistical Learning

Inverse Problems
$y=A f+w$
$\underset{A^{\top}}{\stackrel{\text { def. }}{=}} u=\left(A^{\top} A\right) f+A_{\text {def. }}^{=} C \quad \stackrel{\text { def. }}{=} r$

Regularized inversion:

$$
\begin{gathered}
\min _{f} \frac{1}{2}\|A f-y\|^{2}+\lambda\|f\|^{2} \\
f_{\lambda}=\left(C+\lambda \operatorname{Id}_{p}\right)^{-1} u
\end{gathered}
$$

Statistical Learning

$$
y=X f+\varepsilon
$$

$$
\begin{gathered}
\frac{1}{n} X^{\top} y=\frac{1}{n}\left(X^{\top} X\right) f+\frac{1}{n} X^{\top} \varepsilon \\
\stackrel{\text { def. }}{=} u_{n} \quad \stackrel{\text { def. }}{=} C_{n} \quad \stackrel{\text { def. }}{=} r_{n} \\
\downarrow \quad{ }_{n \rightarrow+\infty} \quad \downarrow_{n}\left(x_{i}, y_{i}\right)_{i} \text { i.i.d. } \\
u=\mathbb{E}(y x) \quad C=\mathbb{E}\left(x x^{\top}\right)
\end{gathered}
$$

Empirical risk minimization:

$$
\begin{gathered}
\min _{f} \frac{1}{2 n}\|X f-y\|^{2}+\lambda\|f\|^{2} \\
f_{\lambda, n}=\left(C_{n}+\lambda \operatorname{Id}_{p}\right)^{-1} u_{n}
\end{gathered}
$$

Inverse Problems vs. Statistical Learning

Inverse Problems
$y=A f+w$

Regularized inversion:
$\min _{f} \frac{1}{2}\|A f-y\|^{2}+\lambda\|f\|^{2}$

$$
f_{\lambda}=\left(C+\lambda \operatorname{Id}_{p}\right)^{-1} u
$$

Statistical Learning

$$
y=X f+\varepsilon
$$

$$
\begin{gathered}
\frac{1}{n} X^{\top} y=\frac{1}{n}\left(X^{\top} X\right) f+\frac{1}{n} X^{\top} \varepsilon \\
\stackrel{\text { def. }}{=} u_{n} \quad \stackrel{\text { def. }}{=} C_{n} \quad \stackrel{\text { def. }}{=} r_{n} \\
\downarrow n \rightarrow+\infty \quad \downarrow_{n}\left(x_{i}, y_{i}\right)_{i} \text { i.i.d. } \\
u=\mathbb{E}(y x) \quad C=\mathbb{E}\left(x x^{\top}\right)
\end{gathered}
$$

Empirical risk minimization:

$$
\begin{gathered}
\min _{f} \frac{1}{2 n}\|X f-y\|^{2}+\lambda\|f\|^{2} \\
f_{\lambda, n}=\left(C_{n}+\lambda \operatorname{Id}_{p}\right)^{-1} u_{n}
\end{gathered}
$$

Exact covariance C
Deterministic bounded noise r
Random noise r_{n}
Noise level $\|r\|$
\rightarrow Noise level $\left\|r_{n}\right\| \sim n^{-\frac{1}{2}}$

Theory: Convergence Rates

Inverse Problems

$$
y=A f_{0}+w
$$

Statistical Learning

$$
\begin{aligned}
y_{i} & =\left\langle x_{i}, f\right\rangle+\varepsilon_{i} \quad \text { i.i.d. } \\
y & =X f_{0}+\varepsilon
\end{aligned}
$$

Theory: Convergence Rates

Inverse Problems

$$
y=A f_{0}+w
$$

Statistical Learning

$$
\begin{aligned}
y_{i} & =\left\langle x_{i}, f\right\rangle+\varepsilon_{i} \quad \text { i.i.d. } \\
y & =X f_{0}+\varepsilon
\end{aligned}
$$

Source condition: $\exists z, \quad f_{0}=\Phi^{*} z$
\longrightarrow smoothness constraint.
$\longrightarrow f_{0} \perp \operatorname{ker}(\Phi)$

Theory: Convergence Rates

Inverse Problems

$$
y=A f_{0}+w
$$

Statistical Learning

$$
\begin{aligned}
y_{i} & =\left\langle x_{i}, f\right\rangle+\varepsilon_{i} \quad \text { i.i.d. } \\
y & =X f_{0}+\varepsilon
\end{aligned}
$$

Source condition: $\exists z, \quad f_{0}=\Phi^{*} z$
\longrightarrow smoothness constraint. $\longrightarrow f_{0} \perp \operatorname{ker}(\Phi)$

Theorem: setting $\lambda \sim\|w\|$,

$$
\begin{aligned}
\left\|f_{\lambda}-f_{0}\right\| & \sim \sqrt{\|w\|} \\
\left\|A f_{\lambda}-A f_{0}\right\| & \sim\|w\|
\end{aligned}
$$

Theory: Convergence Rates

Inverse Problems

$$
y=A f_{0}+w
$$

Statistical Learning

$$
\begin{aligned}
y_{i} & =\left\langle x_{i}, f\right\rangle+\varepsilon_{i} \quad \text { i.i.d. } \\
y & =X f_{0}+\varepsilon
\end{aligned}
$$

Source condition: $\exists z, \quad f_{0}=\Phi^{*} z$
\longrightarrow smoothness constraint. $\longrightarrow f_{0} \perp \operatorname{ker}(\Phi)$

Theorem: setting $\lambda \sim\|w\|$,

$$
\begin{aligned}
\left\|f_{\lambda}-f_{0}\right\| & \sim \sqrt{\|w\|} \\
\left\|A f_{\lambda}-A f_{0}\right\| & \sim\|w\|
\end{aligned}
$$

Theorem: setting $\lambda \sim n^{-\frac{1}{2}}$,

$$
\begin{aligned}
\mathbb{E}\left(\left\|f_{\lambda, n}-f_{0}\right\|\right) & \sim n^{-\frac{1}{4}} \\
\mathbb{E}\left(\left|\left\langle f-f_{0}, x\right\rangle\right|\right) & \sim n^{-\frac{1}{2}}
\end{aligned}
$$

Theory: Convergence Rates

Inverse Problems

$$
y=A f_{0}+w
$$

Statistical Learning

$$
\begin{aligned}
y_{i} & =\left\langle x_{i}, f\right\rangle+\varepsilon_{i} \quad \text { i.i.d. } \\
y & =X f_{0}+\varepsilon
\end{aligned}
$$

Source condition: $\exists z, \quad f_{0}=\Phi^{*} z$
\longrightarrow smoothness constraint. $\longrightarrow f_{0} \perp \operatorname{ker}(\Phi)$

Theorem: setting $\lambda \sim\|w\|$,

$$
\begin{aligned}
\left\|f_{\lambda}-f_{0}\right\| & \sim \sqrt{\|w\|} \\
\left\|A f_{\lambda}-A f_{0}\right\| & \sim\|w\|
\end{aligned}
$$

Faster $O\left(\|w\|, n^{-\frac{1}{2}}\right)$ estimation rates
Super-resolution effect (recover information in $\operatorname{ker}(\Phi)$)

Theorem: setting $\lambda \sim n^{-\frac{1}{2}}$,

$$
\begin{aligned}
\mathbb{E}\left(\left\|f_{\lambda, n}-f_{0}\right\|\right) & \sim n^{-\frac{1}{4}} \\
\mathbb{E}\left(\left|\left\langle f-f_{0}, x\right\rangle\right|\right) & \sim n^{-\frac{1}{2}}
\end{aligned}
$$

Needs non-quadratic \& non-smooth regularization $\left(\ell_{1}, \mathrm{TV}\right.$, trace norm, ...)

L2 vs. L1 Regularization

L2 vs. L1 Regularization

$$
\min _{f}\|y-A f\|^{2}+\lambda\|f\|_{2}^{2}
$$

L2 vs. L1 Regularization

Observations y

Columns of A

$\min _{f}\|y-A f\|^{2}+\lambda\|f\|_{2}^{2}$

$\min _{f}\|y-A f\|^{2}+\lambda\|f\|_{1}$

What's Next

Alexandre Gramfort: ML for classification.

Gael Varoquaux:

SVC with polynomial (degree 3) k

Quadratic Discriminant Analysis

learn
scikit-learn algorithm cheat-sheet
START

