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Introduction

Modern data are often high dimensional.
� computational biology: DNA, few observations and huge number of

variables ;
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Introduction
� images or videos: an image from a digital camera has millions of pixels,

1h of video contains more than 130000 images

3



Introduction

� data coming from consumer preferences: Netflix for instance owns a huge
(but sparse) database of ratings given by millions of users on thousands
of movies or TV shows.

4



The curse of dimensionality

The curse of dimensionality:
� this term was first used by R. Bellman in the introduction of his book

“Dynamic programming” in 1957:

All [problems due to high dimension] may be subsumed under the
heading “the curse of dimensionality”. Since this is a curse, [...], there is
no need to feel discouraged about the possibility of obtaining significant
results despite it.

� he used this term to talk about the difficulties to find an optimum in a
high-dimensional space using an exhaustive search,

� in order to promote dynamic approaches in programming.
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Outline

In high dimensional spaces, nobody can hear you scream

Concentration phenomena

Surprising asymptotic properties for covariance matrices
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Nearest neighbors and neighborhoods in estimation
Supervised classification or regression often rely on local averages:
� Classification : you know the classes of n points from your learning

database, you can classify a new point x by computing the most
represented class in the neighborhood of x.
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Nearest neighbors and neighborhoods in estimation

� Regression : you observe n i.i.d observations (xi, yi) from the model

yi = f(xi) + εi,

and you want to estimate f . If you assume f is smooth, a simple solution
consists in estimating f(x) as the average of all yi corresponding to the k
nearest neighbors xi of x.

Makes sense in small dimension. Unfortunately, not so much when the
dimension p increases...
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High dimensional spaces are empty
Assume your data lives in [0, 1]p. To capture a neighborhood which
represents a fraction s of the hypercube volume, you need the edge length to
be s1/p

� s = 0.1, p = 10, s1/p = 0.63
� s = 0.01, p = 10, s1/p = 0.8
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High dimensional spaces are empty
The volume of an hypercube with an edge length of r = 0.1 is 0.1p → when
p grows, it quickly becomes so small that the probability to capture points
from your database becomes very very small...

Points in high dimensional spaces are isolated

To overcome this limitation, you need a number of sample which grows
exponentially with p...
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Nearest neighbors

X,Y two independent variables, with uniform distribution on [0, 1]p. The
mean square distance ‖X − Y ‖2 satisfies

E[‖X − Y ‖2] = p/6 and Std[‖X − Y ‖2] ' 0.2
√
p.

p = 2 p = 100 p = 1000

0.0 0.2 0.4 0.6 0.8 1.0 1.2
distance

0

20

40

60

80

100

0 1 2 3 4 5
distance

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14
distance

0

200

400

600

800

1000

Figure: Histograms of pairwise-distances between n = 100 points sampled
uniformly in the hypercube [0, 1]p

The notion of nearest neighbors vanishes.
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Classification in high dimension

� since high-dimensional spaces are almost empty,
� it should be easier to separate groups in high-dimensional space with an

adapted classifier,

� the larger p is, the higher the likelihood that we can separate the classes
perfectly with a hyperplane

Overfitting
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Outline

In high dimensional spaces, nobody can hear you scream

Concentration phenomena

Surprising asymptotic properties for covariance matrices
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Volume of the ball

Volume of the ball of radius r is Vp(r) = rp πp/2

Γ(p/2+1) ,
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Fig. Volume of a ball of radius 1 regarding to the dimension p.

Consequence: if you want to cover [0, 1]p with a union of n unit balls, you
need

n ≥ 1

Vp
=

Γ(p/2 + 1)

πp/2
p→∞∼

( p

2πe

) p
2 √

pπ.

For p = 100, n = 42 1039.
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Corners of the hypercube

Assume you draw n samples with uniform law in the hypercube, most
sample points will be in corners of the hypercube :
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Volume of the shell
Probability that a uniform variable on the unit sphere belongs to the shell
between the spheres of radius 0.9 and 1 is

P (X ∈ S0.9(p)) = 1− 0.9p −→
p→∞
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Samples are close to an edge of the sample

X1, . . . Xn i.i.d. in dimension p, with uniform distribution on the unit ball.
Median distance from the origin to the closest data point is given by

med(p, n) =

(
1− 1

2
1
n

) 1
p

.

For n = 500 and p = 10, med = 0.52, which means that most data points
are closer to the edge of the ball than to the center.
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Concentration phenomena and estimation

Consequence: samples are closer to the boundary of the sample space than
to other samples, which makes prediction much more difficult. Indeed, near
the edges of the training sample, one must extrapolate from neighboring
sample points rather than interpolate between them.

Exemple. Assume n data sampled independently with a uniform law
on [−1, 1]p. You want to estimate e−‖x‖

2/8 in 0 from your data. You
choose as an estimator the observed value in xi, the nearest neighbor
of 0. For n = 1000 samples and p = 10, the probability that this
nearest neighbor is at a distance larger than 1

2 from 0 is around 0.99.

18



Concentration phenomena and estimation

Consequence: samples are closer to the boundary of the sample space than
to other samples, which makes prediction much more difficult. Indeed, near
the edges of the training sample, one must extrapolate from neighboring
sample points rather than interpolate between them.

Exemple. Assume n data sampled independently with a uniform law
on [−1, 1]p. You want to estimate e−‖x‖

2/8 in 0 from your data. You
choose as an estimator the observed value in xi, the nearest neighbor
of 0. For n = 1000 samples and p = 10, the probability that this
nearest neighbor is at a distance larger than 1

2 from 0 is around 0.99.

18



Where is located the mass of the Gaussian distribution ?
Mass of the standard Gaussian distribution in the ring between radius r
and r + dr

P[r ≤ ‖X‖ ≤ r+dr] ' e−r
2/2

(2π)p/2
(Vp(r+dr)−Vp(r)) '

e−r
2/2

(2π)p/2
rp−1 pdr Vp(1).

−→ maximum for r =
√
p− 1
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Most of the mass of a Gaussian distribution is located in areas where the
density is extremely small compared to its maximum value.
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Outline

In high dimensional spaces, nobody can hear you scream

Concentration phenomena

Surprising asymptotic properties for covariance matrices
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Covariance matrices

Sample Covariance Matrices appear everywhere in statistics
� classification with gaussian mixture models
� principal component analysis (PCA)
� in linear regression with least squares, etc...
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Problems:
� often necessary to invert Σ

� if n is not large enough, the estimates
of Σ are ill-conditionned or singular

� sometimes necessary to estimate the
eigenvalues of Σ
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Covariance matrices

Context x1 . . . , xn ∈ Rp i.i.d. samples from a gaussian multivariate
distribution N (0,Σp).

The maximum likelihood estimator for Σp is the
sample covariance matrix

Σ̂p =
1

n

n∑
k=1

xkx
T
k .

If p is fixed and n→∞, then (strong law of larger numbers) for any matrix
norm

‖Σ̂p − Σp‖
a.s.−→ 0

Random matrices
� If n, p→∞ with p/n→ c > 0, then

‖Σ̂p − Ip‖2 6→0 (‖‖2 denotes the spectral norm).

� Even false for p/n = 1/100.
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Covariance matrices - Random matrix regime

Context x1 . . . , xn ∈ Rp i.i.d. samples from a gaussian multivariate
distribution N (0, Ip). Note X = (x1, . . . , xp).

� p/n = c > 1

� Convergence in ‖‖∞

maxi,j |Σ̂i,j − δi,j |
a.s.−→ 0

� However, we lose the convergence in spectral norm since

rank(X) ≤ p ⇒ λmin(Σ̂p) = 0 < 1 = λmin(Σp)

No contradiction with the fact that all norms are equivalent in finite
dimension.

23
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Covariance matrices - Random matrix regime

More precisely, the random matrices theory tells us that when p, n→∞
with p/n→ c > 0, then [Marc̆enko-Pastur Theorem, 1967]

1

p

p∑
k=1

δ
λk(Σ̂p)

a.s.−→ µ weakly,

with µ the Marc̆enko-Pastur law of parameter c, which satisfies
� µ({0}) = max(0, 1− c−1)

� on (0,∞), µ has a continuous density supported on
[(1−

√
c)2, (1 +

√
c)2].
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The Marc̆enko–Pastur law
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Figure: Histogram of the eigenvalues of Σ̂p for p = 500, n = 2000, Σp = Ip.
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Classical ways to avoid the curse of dimensionality

Dimension reduction:
� the problem comes from that p is too large,
� therefore, reduce the data dimension to d� p,
� such that the curse of dimensionality vanishes!

Regularization:
� the problem comes from that parameter estimates are unstable,
� therefore, regularize these estimates,
� such that the parameter are correctly estimated!

Parsimonious models:
� the problem comes from that the number of parameters to estimate is

too large,
� therefore, make restrictive assumptions on the model,
� such that the number of parameters to estimate becomes more “decent”!
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