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X is the design matrix (i.e. its columns are the predictors) :

� unknown regression vector : Has some prior structure.

" ⇠ N (0,�2In) independent of �.

Several prior MCs on this model.

In the Bayesian paradigm : random model on �.
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Inference : estimation and testing of (�,�2) from data (X, y)

X is the design matrix (i.e. its columns are the predictors) :

� unknown regression vector : Has some prior structure.

" ⇠ N (0,�2In) independent of �.

Several prior MCs on this model.

In the Bayesian paradigm : random model on �.
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Gaussian prior: Wiener filter
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" ⇠ N (0,⌃e), ⌃e � 0.

� ⇠ N (0,⌃b), ⌃b � 0.

" and � uncorrelated (hence independent by normality).

⌃e and ⌃b fixed and known.
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" ⇠ N (0,⌃e), ⌃e � 0.

� ⇠ N (0,⌃b), ⌃b � 0.

" and � uncorrelated (hence independent by normality).

⌃e and ⌃b fixed and known.

The posterior of � is
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y = X� + "
" ⇠ N (0,⌃e), ⌃e � 0.

� ⇠ N (0,⌃b), ⌃b � 0.

" and � uncorrelated (hence independent by normality).

⌃e and ⌃b fixed and known.

Proposition Suppose also that X is circular convolution by a kernel h, and " and �

are wide-sense stationary zero-mean Gaussian vectors. Then, the MAP, the MMSE

and the Wiener estimator of � are given by the following expression, which is coordinate-

wise separable in the DFT domain :
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where F is the DFT operator, and �2
e and �2

b are the vectors of eigenvalues of ⌃e and

⌃b respectively.
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Hyperparameters (�, p,�) known, the MAP reads :

Argmin

�2Rp

1

2�2
ky �X�k2 + � k�kpp .

For p = 1, we recover the Lasso (see several previous MCs).

For X unitary, the MAP corresponds to computing prox��2|·|p(yi), which

has a closed form or can be computed efficiently.

Except for p = 2, the MMSE does not have a closed-form even when X is

unitary.
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Is any PMLE a MAP ?

Argmin

�2Rp
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PMLE with penalty  is MAP with prior density exp(� (�))/Z if � is assumed

Gibbsian.

But this is only one possible Bayesian interpretation.

There are other possible Bayesian interpretations.
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8⇡, 9 s.t. b�⇡
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MAP, ⌫(�) = exp(� (�))/Z.

9 s.t. b� PMLE =

b�⇡MMSE for some ⇡(�) 6= exp(� (�))/Z in general.
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Actually, the Bayesian interpretation may lead to an apparent paradox as in,

e.g., Lasso :

The Laplacian prior is not heavy-tailed, hence not a wise prior to promote

sparsity.

Yet we have strong theoretical guarantees that Lasso has excellent perfor-

mance to recover sparse vectors (reason lies in blessings of high-dimensional

geometry as seen in the last MC).

A variety of Bayesian priors promoting sparsity have been developed in the

sparse representation literature, though they are not log-concave and enjoy

guarantees only for specific settings.
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n independent observations yi ⇠ B(ki, pi).
pi = h(Xi�), h : R ! [0, 1] is the link function (a cdf).

Logit : logistic cdf h(t) = 1
1+et .

Probit : standard normal cdf h = �.

Xi : i�th row of X
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Estimate � from y.

n independent observations yi ⇠ B(ki, pi).
pi = h(Xi�), h : R ! [0, 1] is the link function (a cdf).

Logit : logistic cdf h(t) = 1
1+et .

Probit : standard normal cdf h = �.

Likelihood :

p(y|�) =
nY

i=1

h(Xi�)yi(1� h(Xi�))ki�yi .

Posterior of � :

p(�|y) /
nY

i=1

h(Xi�)yi(1� h(Xi�))ki�yi⇡(�).

Largely intractable : no closed form even with a flat prior.

Xi : i�th row of X
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Xi : i�th row of Xn independent observations yi ⇠ B(ki, h(Xi�).

Logit : h(t) = 1
1+et , hence Xi� = � log(pi/(1� pi)).

The likelihood is

p(y|�) = e�(
Pn

i=1 yiX
i
)

�
nY

i=1

(1 + exp(�Xi�))�ki .
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Xi : i�th row of X

Posterior largely intractable.

But Xi� = log(pi/(1� pi) ) large ki normal approximation to the binomial.

n independent observations yi ⇠ B(ki, h(Xi�).

Logit : h(t) = 1
1+et , hence Xi� = � log(pi/(1� pi)).

The likelihood is

p(y|�) = e�(
Pn

i=1 yiX
i
)

�
nY

i=1

(1 + exp(�Xi�))�ki .
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Xi : i�th row of X

Posterior largely intractable.

But Xi� = log(pi/(1� pi) ) large ki normal approximation to the binomial.
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= � log(bpi/(1� bpi))
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d
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By the Delta theorem, (b✓i � ✓i)
p
kibpi(1� bpi) are independent and
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p
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d
N (0, 1)
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Xi : i�th row of X

Posterior largely intractable.

But Xi� = log(pi/(1� pi) ) large ki normal approximation to the binomial.

✓i
def
= � log(pi/(1� pi))

b✓i
def
= � log(bpi/(1� bpi))

bpi
def
= yi/ki are independent and bpi !

d
N (pi, pi(1� pi)/ki).

By the Delta theorem, (b✓i � ✓i)
p
kibpi(1� bpi) are independent and

(b✓i � ✓i)
p
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d
N (0, 1)

Approximate large sample likelihood is a weighted least-square

p(y|�) = 1

(2⇡)n/2
e�

Pn
i=1

p
ki bpi(1�bpi)(bpi�Xi�)2

2 .

Back to Gaussian (weighted) linear regression.

n independent observations yi ⇠ B(ki, h(Xi�).

Logit : h(t) = 1
1+et , hence Xi� = � log(pi/(1� pi)).

The likelihood is

p(y|�) = e�(
Pn

i=1 yiX
i
)

�
nY

i=1

(1 + exp(�Xi�))�ki .
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Xi : i�th row of Xn independent observations yi ⇠ B(ki, h(Xi�).

Logit : h = �, standard normal cdf.

The posterior of �

p(�|y) /
nY

i=1

�(Xi�)yi(1� �(Xi�))ki�yi⇡(�).

The likelihood and posterior even less tractable that for the logistic.

One can also use the Delta theorem to get a normal approximation, though

less precise that for the logistic.

Otherwise MC sampling through latent variables.
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Bayesian inference requires computation of moments (e.g. mean, variance),

modes and quantiles (e.g. medians) of the posterior distribution.

MAP :

Involves an solving an optimization problem.

Closed-form : for some (interesting cases).

MMSE :

Involves an integration problem.

Closed-form : rather an exception than a rule.

Analytical approximations (Laplace, saddlepoint, etc) : requires smooth-

ness.

Numerical quadrature : unrealistic in high-dimensional settings.

Monte-Carlo methods.
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MAP
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Argmin

�2Rp
� log p(y|�, ✓e)� log ⇡(�)

A structured composite optimization problem.

A whole area in its own :

The key is to exploit the properties of each term individually and separately.

A rich literature including proximal splitting for large-scale data.

Previous MCs on the subject.
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Argmin

�2Rp
� log p(y|�, ✓e)� log ⇡(�)

A structured composite optimization problem.

A whole area in its own :

The key is to exploit the properties of each term individually and separately.

A rich literature including proximal splitting for large-scale data.

Previous MCs on the subject.

Example (Linear regression with GGD prior)

Hyperparameters (�, p,�) known, the MAP reads :

Argmin

�2Rp

1

2�

2
ky �X�k2 + � k�kpp , p � 0

Forward-Backward splitting :

�k+1 2 prox��2�k·kp
p

�
�k + �X

>
(y �X�k)

�
, � 2]0, 1/ kXk2].

Convergence guarantees :

p � 1 : to a global minimizer (� even to < 2/ kXk2.

p 2 [0, 1[ : in general to a critical point (o-minimal geometry arguments),

and a global minimizer if started sufficiently close to it.
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Laplace approximation
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Goal is to compute

E [g(�)|y] =
R
Rp g(�)p(y|�)⇡(�)d�R

Rp p(y|�)⇡(�)d�

where g, p and ⇡ are smooth enough functions of �.

Approximately evaluate the following integral for large n

I
def
=

Z

Rp

q(�) exp(�nh(�))d�,

h and q are smooth enough around

b�, the unique minimizer of h at

b�.
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Goal is to compute

E [g(�)|y] =
R
Rp g(�)p(y|�)⇡(�)d�R

Rp p(y|�)⇡(�)d�

where g, p and ⇡ are smooth enough functions of �.

Approximately evaluate the following integral for large n

I
def
=

Z

Rp

q(�) exp(�nh(�))d�,

h and q are smooth enough around

b�, the unique minimizer of h at

b�.

The Laplace method involves a Taylor expansion of q and h around

b� :

I = exp(�nh(b�))
Z

Rp
(q(b�) + (� � b�)rq(b�) + 1

2 (� � b�)>r2
q(b�)(� � b�) + · · · )e�

n(�� b�)>r2h( b�)(�� b�)
2 d�

= exp(�nh(b�))
⇣
(2⇡)

p/2
n
�p/2

det(r2
h(b�))�1/2

⌘⇣
q(b�) + O(n

�1
)

⌘

Apply to the numerator (resp. denominator) of E [g(�)|y], with q = g (resp.

q = 1) and h(�) = � log(p(y|�))� log(⇡(�)) :

E [g(�)|y] = g(b�)
�
1 +O(n�1

)

�
.

MMSE necessitates to solve the MAP supposed to be unique.
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Goal is to compute

E [g(�)|y] =
R
Rp g(�)p(y|�)⇡(�)d�R

Rp p(y|�)⇡(�)d�

where g, p and ⇡ are smooth enough functions of �, g positive.

I
def
=

Z

Rp

q(�) exp(�nh(�))d�

= exp(�nh(b�))
⇣
(2⇡)p/2n�p/2

det(r2h(b�))�1/2
⌘⇣

q(b�) +O(n�1
)

⌘

Suppose

b� is the unique minimizer of nh(�) = � log(p(y|�)) � log(⇡(�)), and

c�⇤
is the unique

minimizer of nh⇤
= � log(p(y|�))� log(⇡(�))� log(g(�)).

Apply to the numerator (resp. denominator) of E [g(�)|y], with h⇤
(resp. h) and q = 1 :

E [g(�)|y] =

vuut det(r2h(b�))
det(r2h⇤

(

c�⇤
))

exp

⇣
n(h(b�)� h⇤

(

c�⇤
))

⌘ �
1 +O(n�2

)

�
.

2nd-order approximation, but necessitates to solve 2 non-degenerate optimization.

Availability of all-purpose MC simulation approaches have rendered these methods less used.
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Monte-Carlo sampling
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Consider the expectation wrt to measure µ on Y :

E [g(Y )] =

Z

Y
g(y)µ(dy).

Statistical sampling is a natural way to evaluate this integral :

Generate m iid observations y1, y2, · · · , ym from µ and compute

ḡm =
1

m

mX

i=1

g(yi).

By the LLN, ḡm converges in probability (or even a.s.) to E [g(Y )].

This justifies ḡm as an approximation for E [g(Y )] for large m.

This suggests to use MC sampling to approximate the MMSE E [�|y].
One has to sample from the posterior distribution.

Bayesian posterior distributions are generally non-standard which may not ea-

sily allow sampling from them.
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Monte-Carlo sampling
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Consider the MMSE :

E [�|y] =
R
R ✓�(y;�,�2)⇡(�)d�R
R �(y;�,�2)⇡(�)d�

,

⇡ is heavy-tailed and easy to sample from.

Two alternatives :

1. Ratio of expectations of ✓⇡(�) and ⇡(�) wrt to N (y,�2).

Sample from N (y,�2) and approximate these expectations to get an

approximation of E [�|y].
Unwise as ⇡ is heavy-tailed while the Gaussian concentrates around its

mean, hence missing the contribution from the tails.

2. Ratio of expectations of ✓�(y;�,�2) and �(y;�,�2) wrt to ⇡.

Sample from ⇡ and approximate these expectations to get an approxi-

mation of E [�|y].
Not satisfactory either as p(�|y) is not as heavy-tailed as ⇡.

Both alternatives would lead to slow convergence of the sample mean.

Rather sample directly from p(�|y) itself.
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Importance sampling
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Consider the expectation wrt to measure µ on Y :

Eµ [g(Y )] =

Z

Y
g(y)µ(dy).

Suppose that it is difficult/expensive to sample from µ, but there exists a pro-

bability measure ⌫ very close to µ from which it is easy to sample.

Then

Eµ [g(Y )] = E⌫ [g(Y )w(Y )] , w = µ/⌫

where w = µ/⌫ (beware of support issues).

Sample from ⌫ and compute sample mean of gw.

⌫ is the importance sampling measure.
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Consider the expectation wrt to measure µ on Y :

Eµ [g(Y )] =

Z

Y
g(y)µ(dy).

Suppose that it is difficult/expensive to sample from µ, but there exists a pro-

bability measure ⌫ very close to µ from which it is easy to sample.

Then

Eµ [g(Y )] = E⌫ [g(Y )w(Y )] , w = µ/⌫

where w = µ/⌫ (beware of support issues).

Sample from ⌫ and compute sample mean of gw.

⌫ is the importance sampling measure.

Example yi are n i.i.d. N (✓,�2), where ✓ and �2 are independent, ✓ has a double exponential distribu-

tion with density e�|✓|/2, and �2 has the prior density of (1 + �2)�2. One can show that

p(✓,�2|y) / f1(�
2|✓)f2(✓)e�|✓|

✓
�2

1 + �2

◆2

,

where f1 is the density of inverse Gamma with parameters (n/2 + 1, tfracn2((✓ � ȳ)2 + s2), f2 is the

n+ 1 t-density, with location ȳ (sample mean) and scale / s (sample std).

The tails are mostly captured in f1(�2|✓)f2(✓), which can serve as an importance sampling density.
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MCMC: Iterative MC sampling
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MC methods necessitate complete determination of the sampling measure.

Situations where posterior distributions are incompletely specified or are speci-

fied indirectly cannot be handled, e.g., only in terms of several conditional and

marginal distributions.

It turns out that it is indeed possible in such cases to adopt an iterative MC

sampling scheme.

These iterative MC procedures typically generate a random sequence with the

Markov property such that this Markov chain is ergodic with the limiting distri-

bution being the target posterior distribution.

A whole class of such iterative procedures are dubbed Markov chain Monte

Carlo (MCMC) procedures.
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A glimpse of Markov chains
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Definition A sequence of random variables {Xn}n�0 is a Markov chain if for any

n, given Xn, the past {Xj : j  n� 1} and the future {Xj : j � n+ 1} are inde-

pendent, i.e. for any two events A and B defined respectively in terms of the past and

the future,

P (A \B|Xn) = P (A|Xn)P (B|Xn),

Definition A Markov chain has a time homogeneous or stationary transition probabi-

lity iff the probability distribution of Xn+1|Xn = x, and the past, {Xj : j  n� 1} de-

pends only on x. This is specified in terms of the transition kernel P , where P (x,A) =

Pr(Xn+1 2 A|Xn = x). If the state-space (set of values Xn can take), is coun-

table, this reduces to specifying the transition probability matrix P , Pij = Pr(Xn+1 =

j|Xn = i).

Lemma Suppose that {Xn}n�0 is a Markov chain on a countable state-space with

stationary transition probabilities. Then the joint probability distribution of {Xn}n�0 is

Pr (Xi = ji : i = 0, · · · , n) = Pr (X0 = j0)
nY

i=1

Pji�1ji .
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A glimpse of Markov chains
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Definition A probability distribution µ is called stationary or invariant for a transition

probability P or the associated Markov chain {Xn} iff : when the probability distribution

of X0 is µ then the same is true for Xn for all n � 1.

Lemma Suppose that {Xn}n�0 is a Markov chain on a state-space S with kernel

P . Then a probability distribution µ with density p is a stationary for P if

Z

A
p(x)dx =

Z

S
P (x,A)p(x)dx, 8A ⇢ S.

In the countable case : µ is a left eigenvector of P .

Definition A Markov chain {Xn}n�0 with a countable state space S and transition

probability matrix P is said to be irreducible if for any two states i and j the probability

of the Markov chain visiting j starting from i is positive. A similar notion of irreducibility

can be stated for general state spaces.
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LLN for Markov chains

26

Theorem Let {Xn}n�0 be a Markov chain with state-space S and kernel P . Further,

suppose it is (Harris) irreducible and has a stationary distribution µ. Then, for any

bounded function g : S ! R and for any initial distribution of X0

1

n

n�1X

i=0

g(Xi) !
P

Z

S
g(x)µ(dx).
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Theorem Let {Xn}n�0 be a Markov chain with state-space S and kernel P . Further,

suppose it is (Harris) irreducible and has a stationary distribution µ. Then, for any

bounded function g : S ! R and for any initial distribution of X0

1

n

n�1X

i=0

g(Xi) !
P

Z

S
g(x)µ(dx).

Remark Under additional conditions (e.g. aperiodicity for countable state-space),

one can also assert that the distribution of Xn converges (in an appropriate topology)

to µ.
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This result is the backbone of 
Monte-Carlo Markov Chain (MCMC) methods. 

Theorem Let {Xn}n�0 be a Markov chain with state-space S and kernel P . Further,

suppose it is (Harris) irreducible and has a stationary distribution µ. Then, for any

bounded function g : S ! R and for any initial distribution of X0

1

n

n�1X

i=0

g(Xi) !
P

Z

S
g(x)µ(dx).

Remark Under additional conditions (e.g. aperiodicity for countable state-space),

one can also assert that the distribution of Xn converges (in an appropriate topology)

to µ.
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Metropolis-Hastings algorithm
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A very general-purpose MCMC method.

Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant

distribution is the target density.
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Metropolis-Hastings algorithm

27

A very general-purpose MCMC method.

Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant

distribution is the target density.

Inputs : State-space S, µ a probability measure with density p on S. X0.

Proposal transition kernel Q with density q : 8x 2 S, easy to sample from q(x, ·).
Compute: Acceptance probability ⇢ : ⇢(x, y) = min

⇣
1, p(y)q(y,x)

p(x)q(x,y)

⌘
, 8(x, y) s.t. p(x)q(x, y) > 0.

repeat

if X

n

= x then

draw a sample Y

n

from q(x, ·) ;

Set

X

n+1 =

8
<

:
Y

n

with prob. ⇢(X
n

, Y

n

)

X

n

with prob. 1� ⇢(X
n

, Y

n

).

until convergence;
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A very general-purpose MCMC method.

Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant

distribution is the target density.

Proposition (i) {Xn}n�0 is a Markov chain on S.

(ii) µ is a stationary/invariant probability distribution for {Xn}n�0.

(iii) If Q is irreducible on S, then so is {Xn}n�0 and the LLN on Markov chains

applies.

Inputs : State-space S, µ a probability measure with density p on S. X0.

Proposal transition kernel Q with density q : 8x 2 S, easy to sample from q(x, ·).
Compute: Acceptance probability ⇢ : ⇢(x, y) = min

⇣
1, p(y)q(y,x)

p(x)q(x,y)

⌘
, 8(x, y) s.t. p(x)q(x, y) > 0.

repeat

if X

n

= x then

draw a sample Y

n

from q(x, ·) ;

Set

X

n+1 =

8
<

:
Y

n

with prob. ⇢(X
n

, Y

n

)

X

n

with prob. 1� ⇢(X
n

, Y

n

).

until convergence;
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Metropolis-Hastings algorithm
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A very general-purpose MCMC method.

Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant

distribution is the target density.

A distinctive feature of MH for Bayesian inference is that it is enough to know p

up to a multiplicative constant : acceptance probability depends on ratios.

Conclusion : the normalization constant in the posterior density is of no impor-

tance at all in the MH algorithm.

Inputs : State-space S, µ a probability measure with density p on S. X0.

Proposal transition kernel Q with density q : 8x 2 S, easy to sample from q(x, ·).
Compute: Acceptance probability ⇢ : ⇢(x, y) = min

⇣
1, p(y)q(y,x)

p(x)q(x,y)

⌘
, 8(x, y) s.t. p(x)q(x, y) > 0.

repeat

if X

n

= x then

draw a sample Y

n

from q(x, ·) ;

Set

X

n+1 =

8
<

:
Y

n

with prob. ⇢(X
n

, Y

n

)

X

n

with prob. 1� ⇢(X
n

, Y

n

).

until convergence;
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Gibbs sampling
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The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that

has as its stationary distribution a target distribution in a high- dimensional space but having some

special structure.

The most interesting aspect of this approach is that it only draw samples from univariate distribu-

tions through the course of iterations.
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The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that

has as its stationary distribution a target distribution in a high- dimensional space but having some

special structure.

The most interesting aspect of this approach is that it only draw samples from univariate distribu-

tions through the course of iterations.

Inputs : State-space S ⇢ Rp
, µ a probability measure on S.

Initial configuration X0.

for n = 1 · · · do

Draw sample Xn,2 from the univariate distribution µ(·|xn�1,2, · · · , xn�1,p) ;

for i = 2 to p do

Draw sample Xn,i from the univariate distribution µ(·|Xn,1, · · · , Xn,i�1, xn�1,i+1, · · · , xn�1,p).
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The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that

has as its stationary distribution a target distribution in a high- dimensional space but having some

special structure.

The most interesting aspect of this approach is that it only draw samples from univariate distribu-

tions through the course of iterations.

Inputs : State-space S ⇢ Rp
, µ a probability measure on S.

Initial configuration X0.

for n = 1 · · · do

Draw sample Xn,2 from the univariate distribution µ(·|xn�1,2, · · · , xn�1,p) ;

for i = 2 to p do

Draw sample Xn,i from the univariate distribution µ(·|Xn,1, · · · , Xn,i�1, xn�1,i+1, · · · , xn�1,p).

Proposition (i) The Gibbs sampler is a special case of MH.

(ii) {Xn}n�0 is an irreducible Markov chain on S.

(iii) µ is a stationary/invariant probability distribution for {Xn}n�0.

(iv) The LLN on Markov chains applies.
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Gibbs sampling

29

The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that

has as its stationary distribution a target distribution in a high- dimensional space but having some

special structure.

The most interesting aspect of this approach is that it only draw samples from univariate distribu-

tions through the course of iterations.

Inputs : State-space S ⇢ Rp
, µ a probability measure on S.

Initial configuration X0.

for n = 1 · · · do

Draw sample Xn,2 from the univariate distribution µ(·|xn�1,2, · · · , xn�1,p) ;

for i = 2 to p do

Draw sample Xn,i from the univariate distribution µ(·|Xn,1, · · · , Xn,i�1, xn�1,i+1, · · · , xn�1,p).

Proposition (i) The Gibbs sampler is a special case of MH.

(ii) {Xn}n�0 is an irreducible Markov chain on S.

(iii) µ is a stationary/invariant probability distribution for {Xn}n�0.

(iv) The LLN on Markov chains applies.

Is popular for hierarchical Bayesian modeling.

e.g. in Markov random fields with Ising model.

Improved estimators can be obtained via variance-reduction (Rao-Blackwell theorem).
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A Langevin diffusion X in Rp
, is a homogeneous Markov process defined by

the SDE

dX(t) =
1

2

⇢(X(t))dt+ dW (t), t > 0, X(0) = x0,

⇢ = �r logµ, µ is everywhere non-zero and suitably smooth target density

function on Rp
;

W is a p-dimensional Brownian process.

Langevin diffusion

30

Drift Diffusion
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A Langevin diffusion X in Rp
, is a homogeneous Markov process defined by

the SDE

dX(t) =
1

2

⇢(X(t))dt+ dW (t), t > 0, X(0) = x0,

⇢ = �r logµ, µ is everywhere non-zero and suitably smooth target density

function on Rp
;

W is a p-dimensional Brownian process.

Langevin diffusion

30

Drift Diffusion

Under mild assumptions, the SDE has a unique strong solution and X(t) has

a stationary distribution with density precisely µ.

Opens the door to approximating integrals
R
Rp g(✓)µ(✓)d✓ by the average va-

lue of the Langevin diffusion path

1

T

Z T

0
g(X(t))dt, for large enough T .
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Langevin diffusion

31

Euler (forward) discretization

Xn+1 = Xn +

�

2

⇢(Xn) +
p
�Zn, X0 = x0,

= Xn � �

2

r logµ(Xn) +
p
�Zn

� > 0 : the discretization step-size ;

{Zn}n�0 i.i.d. ⇠ N (0, Ip).



MC’17-

Langevin diffusion
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X�(t)
def
= X0 +

1

2

Z t

0
⇢(X(s))ds+

Z t

0
dW (s)ds,

X(t) = Xn for t 2 [n�, (n+ 1)�[.

{Xn}n�0 is a Markov chain.

The Girsanov formula implies :

KL
�
µ({X(t) : t 2 [0, T ]}), µ(

�
X�(t) : t 2 [0, T ]

 
)
�
�!
h!0

0.

The average value can then be naturally approximated via

�

T

bT/�cX

n=0

Xn.

Euler (forward) discretization

Xn+1 = Xn +

�

2

⇢(Xn) +
p
�Zn, X0 = x0,

= Xn � �

2

r logµ(Xn) +
p
�Zn

� > 0 : the discretization step-size ;

{Zn}n�0 i.i.d. ⇠ N (0, Ip).
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Langevin diffusion
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X�(t)
def
= X0 +

1

2

Z t

0
⇢(X(s))ds+

Z t

0
dW (s)ds, X(t) = Xn for t 2 [n�, (n+ 1)�[.

Theorem Assume that ⇢ is locally Lipchitz continuous and verifies an appropriate

growth condition. Then,

��E
⇥
X�(T )

⇤
� E

⇥
X(T )

⇤��
2
 E

⇥
sup

0tT

��X�(t)�X(t)
��
2

⇤
�!
�!0

0.

If ⇢ is uniformly Lipschitz continuous, the optimal consistency rate �1/2 is achieved.

Euler (forward) discretization

Xn+1 = Xn +

�

2

⇢(Xn) +
p
�Zn, X0 = x0,

= Xn � �

2

r logµ(Xn) +
p
�Zn
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Take-away messages
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Bayesian modeling is a flexible paradigm.
Bayesian inference involves optimization and integration.
Bayesian interpretation is not universal: all PMLE are 
NOT MAP.
Bayesian computation is essentially easier for MAP.
For MMSE, MCMC methods are general and versatile, 
though scaling with dimension can be an issue.
A variety of applications: signal and image processing,  
communication, biostatistics, classification, machine 
learning. 
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https://fadili.users.greyc.fr/

Thanks
Any questions ?

http://www.greyc.ensicaen.fr/~jfadili
http://www.greyc.ensicaen.fr/~jfadili

