## **Bayesian Inference**

#### Jalal Fadili Normandie Université-ENSICAEN, GREYC

Mathematical coffees 2017









#### **Linear regression**



 $\checkmark$  X is the design matrix (i.e. its columns are the predictors) :

- $\checkmark$   $\beta$  unknown regression vector : Has some **prior** structure.
- $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n) \text{ independent of } \beta.$
- Several prior MCs on this model.
  - In the Bayesian paradigm : random model on eta.

#### **Linear regression**



- $\blacksquare$  X is the design matrix (i.e. its columns are the predictors) :
- $\beta$  unknown regression vector : Has some prior structure.
- $\ \, \ \, \ \, \varepsilon \sim \mathcal{N}(0,\sigma^2 \mathbf{I}_n) \text{ independent of } \beta.$
- Several prior MCs on this model.
  - In the Bayesian paradigm : random model on  $\beta$ .

#### **Likelihood function**

$$y = Xeta + arepsilon$$
 For simplicity,  $\mathrm{rank}(X) = p$ .

Additive White Gaussian noise :

$$\begin{split} Y|(\beta,\sigma^2) &\sim \mathcal{N}(X\beta,\sigma^2\mathbf{I}_n) & \|z\|^2 = z^{\top}z \\ \beta_{\mathrm{ols}} &= X^+ y \\ y_{\mathrm{ols}} &= X\beta_{\mathrm{ols}} \end{split} \\ p(y|\beta,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|y-X\beta\|^2}{2\sigma^2}\right) & = \operatorname{Proj}_{\mathrm{Im}(X)} y \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|y-y_{\mathrm{ols}}\|^2 + \|X(\beta-\beta_{\mathrm{ols}})\|^2}{2\sigma^2}\right) \\ &= \phi(y;y_{\mathrm{ols}},\sigma^2)\phi(\beta;\beta_{\mathrm{ols}},\sigma^2(X^{\top}X)^{-1}). \end{split}$$

#### **Likelihood function**

$$y = Xeta + arepsilon$$
 For simplicity,  $\mathrm{rank}(X) = p$ .

Additive White Gaussian noise :

$$\begin{split} Y|(\beta,\sigma^2) &\sim \mathcal{N}(X\beta,\sigma^2\mathbf{I}_n) & \|z\|^2 = z^{\top}z \\ \beta_{\mathrm{ols}} &= X^+ y \\ y_{\mathrm{ols}} &= X\beta_{\mathrm{ols}} \end{split} \\ p(y|\beta,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|y-X\beta\|^2}{2\sigma^2}\right) & = \operatorname{Proj}_{\mathrm{Im}(X)} y \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|y-y_{\mathrm{ols}}\|^2 + \|X(\beta-\beta_{\mathrm{ols}})\|^2}{2\sigma^2}\right) \\ &= \phi(y;y_{\mathrm{ols}},\sigma^2)\phi(\beta;\beta_{\mathrm{ols}},\sigma^2(X^{\top}X)^{-1}). \end{split}$$

(\$\beta\_{ols}, y - y\_{ols}\$) are jointly sufficient statistics for (\$\beta, \sigma^2\$).
 Moreover,

$$\beta_{\text{ols}} | (\beta, \sigma^2) \sim \mathcal{N}(\beta, \sigma^2 (X^\top X)^{-1})$$
  
independent of  $\|y - y_{\text{ols}}\|^2 | \sigma^2 \sim \sigma^2 \chi^2_{n-p}$ .

$$y = Xeta + arepsilon$$
 For simplicity,  $\mathrm{rank}(X) = p$ .

Take the (Jeffrey's) prior :

The joint posterior is

$$\pi(eta,\sigma^2) \propto rac{1}{\sigma^2}.$$

0.

$$\beta_{\rm ols} = X^+ y$$
$$y_{\rm ols} = X \beta_{\rm ols}$$

$$p(\beta, \sigma^2 | y) = \frac{p(y|\beta, \sigma^2) \pi(\beta, \sigma^2)}{p(y)} = \operatorname{Proj}_{\operatorname{Im}(X)} y$$
$$= \frac{\phi(y; y_{\text{ols}}, \sigma^2) \pi(\beta, \sigma^2)}{p(y)} \phi(\beta; \beta_{\text{ols}}, \sigma^2(X^\top X)^{-1})$$
$$= p(\sigma^2 | \|y - y_{\text{ols}}\|^2) \phi(\beta; \beta_{\text{ols}}, \sigma^2(X^\top X)^{-1}).$$

$$y = X\beta + \varepsilon$$
 For simplicity,  $\operatorname{rank}(X) = p$ .

Take the (Jeffrey's) prior :

$$\pi(eta,\sigma^2) \propto rac{1}{\sigma^2}$$

$$\beta_{\rm ols} = X^+ y$$
$$y_{\rm ols} = X \beta_{\rm ols}$$

$$p(\beta, \sigma^2 | y) = p(\sigma^2 | \| y - y_{\text{ols}} \|^2) \phi(\beta; \beta_{\text{ols}}, \sigma^2 (X^\top X)^{-1}). = \operatorname{Proj}_{\operatorname{Im}(X)} y$$

Integrating out eta, the marginal posterior of  $\sigma^2$  is  $\propto$  inverse- $\chi^2_{n-p}$ , i.e.

$$p(\sigma^2|y) = p(\sigma^2|\hat{r}^2) \qquad (\hat{r}^2 \stackrel{\text{def}}{=} \|y - y_{\text{ols}}\|^2)$$
$$\propto p(\hat{r}^2|\sigma^2)\pi(\sigma^2) \propto \frac{1}{\sigma^2} p_{\sigma^2\chi^2_{n-p}}(\hat{r}^2)$$
$$\propto \frac{1}{\sigma^4} p_{\chi^2_{n-p}}(\hat{r}^2/\sigma^2) \propto \frac{\hat{r}^4}{\sigma^4} p_{1/\chi^2_{n-p}}(\sigma^2/\hat{r}^2)$$

$$y = X\beta + \varepsilon$$
 For simplicity,  $\operatorname{rank}(X) = p$ .

Take the (Jeffrey's) prior :

$$\pi(\beta,\sigma^2) \propto rac{1}{\sigma^2}$$

$$\beta_{\rm ols} = X^+ y$$
$$y_{\rm ols} = X \beta_{\rm ols}$$

 $p(\beta, \sigma^2 | y) = p(\sigma^2 | \| y - y_{\text{ols}} \|^2) \phi(\beta; \beta_{\text{ols}}, \sigma^2 (X^\top X)^{-1}). = \operatorname{Proj}_{\operatorname{Im}(X)} y$ 

Integrating out  $\sigma^2$ , the marginal posterior of  $\beta$  is multivariate  $t_{n-p}$ , i.e.

$$p(\beta|y) = \frac{\Gamma(n/2) \det(X^{\top}X)^{1/2} \widehat{\sigma}^{-p}}{\pi^{p/2} \Gamma((n-p)/2)(n-p)^{p/2}} \left(1 + \frac{\|X(\beta - \beta_{\text{ols}})\|^2}{(n-p)\widehat{\sigma}^2}\right)^{-n/2}$$

 $\hat{\sigma}^2 \stackrel{\text{def}}{=} \|y - y_{\text{ols}}\|^2 / (n - p)$  (unbiased estimator of the variance).

$$y = X\beta + \varepsilon$$
 For simplicity,  $\operatorname{rank}(X) = p$ .

Take the (Jeffrey's) prior :

$$\pi(\beta,\sigma^2) \propto rac{1}{\sigma^2}$$

$$\beta_{\rm ols} = X^+ y$$
$$y_{\rm ols} = X \beta_{\rm ols}$$

 $p(\beta, \sigma^2 | y) = p(\sigma^2 | \| y - y_{\text{ols}} \|^2) \phi(\beta; \beta_{\text{ols}}, \sigma^2 (X^\top X)^{-1}). = \operatorname{Proj}_{\operatorname{Im}(X)} y$ 

Integrating out  $\sigma^2$ , the marginal posterior of  $\beta$  is multivariate  $t_{n-p}$ , i.e.

$$p(\beta|y) = \frac{\Gamma(n/2) \det(X^{\top}X)^{1/2} \widehat{\sigma}^{-p}}{\pi^{p/2} \Gamma((n-p)/2)(n-p)^{p/2}} \left(1 + \frac{\|X(\beta - \beta_{\text{ols}})\|^2}{(n-p)\widehat{\sigma}^2}\right)^{-n/2}$$

 $\hat{\sigma}^2 \stackrel{\text{def}}{=} \|y - y_{\text{ols}}\|^2 / (n - p)$  (unbiased estimator of the variance).

If  $n \ge p+2$ , the posterior mean of  $\beta$  is  $\beta_{ols}$ , i.e. the MMSE is

$$\mathbb{E}\left[\beta|y\right] = \beta_{\text{ols}}.$$

The posterior mode is the same.

$$y = X\beta + \varepsilon$$

- $\varepsilon \sim \mathcal{N}(0, \Sigma_e), \Sigma_e \succ 0.$
- $\beta \sim \mathcal{N}(0, \Sigma_b), \Sigma_b \succ 0.$
- $\boldsymbol{\mathcal{S}} \in \boldsymbol{\mathcal{E}}$  and  $\boldsymbol{\beta}$  uncorrelated (hence independent by normality).
- $\blacktriangleright$   $\Sigma_e$  and  $\Sigma_b$  fixed and known.

$$y = X\beta + \varepsilon$$

$$\varepsilon \sim \mathcal{N}(0, \Sigma_e), \Sigma_e \succ 0.$$

- $\boldsymbol{\mathcal{S}} \in \boldsymbol{\varepsilon}$  and  $\boldsymbol{\beta}$  uncorrelated (hence independent by normality).

 $\blacktriangleright$   $\Sigma_e$  and  $\Sigma_b$  fixed and known.

$$p(y|\beta, \Sigma_e) = \phi(y; X\beta, \Sigma_e) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^n \det(\Sigma_e)}} \exp\left(-\frac{\|y - X\beta\|_{\Sigma_e^{-1}}^2}{2}\right) \qquad \|z\|_{\mathcal{A}}^2 = z^\top \mathcal{A}z$$
$$\pi(\beta|\Sigma_b) = \phi(\beta; 0, \Sigma_b) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^p \det(\Sigma_b)}} \exp\left(-\frac{\|\beta\|_{\Sigma_b^{-1}}^2}{2}\right)$$

$$y = X\beta + \varepsilon$$

$$\varepsilon \sim \mathcal{N}(0, \Sigma_e), \Sigma_e \succ 0.$$

- $\boldsymbol{\mathcal{S}} \in \boldsymbol{\mathcal{E}}$  and  $\boldsymbol{\beta}$  uncorrelated (hence independent by normality).
- $\Sigma_e$  and  $\Sigma_b$  fixed and known.

$$p(y|\beta, \Sigma_e) = \phi(y; X\beta, \Sigma_e) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^n \det(\Sigma_e)}} \exp\left(-\frac{\|y - X\beta\|_{\Sigma_e^{-1}}^2}{2}\right) \qquad \|z\|_A^2 = z^\top Az$$
$$\pi(\beta|\Sigma_b) = \phi(\beta; 0, \Sigma_b) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^p \det(\Sigma_b)}} \exp\left(-\frac{\|\beta\|_{\Sigma_b^{-1}}^2}{2}\right)$$

The posterior of  $\beta$  is

 $p(\beta|y) \propto \phi(y; X\beta, \Sigma_e)\phi(\beta; 0, \Sigma_b).$ 

$$y = X\beta + \varepsilon$$

$$\varepsilon \sim \mathcal{N}(0, \Sigma_e), \Sigma_e \succ 0.$$

- $\bullet$   $\varepsilon$  and  $\beta$  uncorrelated (hence independent by normality).
- $\Sigma_e$  and  $\Sigma_b$  fixed and known.

$$p(y|\beta, \Sigma_e) = \phi(y; X\beta, \Sigma_e) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^n \det(\Sigma_e)}} \exp\left(-\frac{\|y - X\beta\|_{\Sigma_e^{-1}}^2}{2}\right) \qquad \|z\|_{\mathcal{A}}^2 = z^\top \mathcal{A}z$$
$$\pi(\beta|\Sigma_b) = \phi(\beta; 0, \Sigma_b) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^p \det(\Sigma_b)}} \exp\left(-\frac{\|\beta\|_{\Sigma_b^{-1}}^2}{2}\right)$$

• The posterior of  $\beta$  is

 $p(\beta|y) \propto \phi(y; X\beta, \Sigma_e)\phi(\beta; 0, \Sigma_b).$ 

**Proposition** Under the above Bayesian setting, The MAP and MMSE are given by

$$\left(X^{\top}\Sigma_e^{-1}X + \Sigma_b^{-1}\right)^{-1}X^{\top}\Sigma_e^{-1}y = \left(I_p - \Sigma_b X^{\top}(\Sigma_e + X\Sigma_b X^{\top})^{-1}X\right)\Sigma_b X^{\top}\Sigma_e^{-1}y.$$

This also coincides with the Wiener estimator, i.e. the best linear estimator minimizing the quadratic risk.

MC'17-7

#### **Gaussian prior: diagonal estimation**

$$y = X\beta + \varepsilon$$

$$\varepsilon \sim \mathcal{N}(0, \Sigma_e), \Sigma_e \succ 0.$$

- $\boldsymbol{\mathcal{S}} \in \boldsymbol{\mathcal{E}}$  and  $\boldsymbol{\beta}$  uncorrelated (hence independent by normality).
- $\blacktriangleright$   $\Sigma_e$  and  $\Sigma_b$  fixed and known.

**Proposition** Suppose also that *X* is circular convolution by a kernel *h*, and  $\varepsilon$  and  $\beta$  are wide-sense stationary zero-mean Gaussian vectors. Then, the MAP, the MMSE and the Wiener estimator of  $\beta$  are given by the following expression, which is coordinate-wise separable in the DFT domain :

$$\frac{\mathcal{F}(h)_i^*}{|\mathcal{F}(h)_i|^2 + \frac{(\sigma_e^2)_i}{(\sigma_b^2)_i}} \mathcal{F}(y)_i,$$

where  $\mathcal{F}$  is the DFT operator, and  $\sigma_e^2$  and  $\sigma_b^2$  are the vectors of eigenvalues of  $\Sigma_e$  and  $\Sigma_b$  respectively.

#### **Generalized Gaussian prior**

$$y = X\beta + \varepsilon$$

 $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n).$  $\boldsymbol{\flat}_i \sim_{iid} \mathrm{GGD}(p, \lambda), \lambda > 0, p > 0.$ 

$$p(y|\beta,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{\|y-X\beta\|^2}{2\sigma^2}}$$
$$\pi(\beta|p,\lambda) = \prod_{i=1}^p \frac{p\sqrt[p]{\lambda}}{2\Gamma(1/p)} e^{-\lambda|\beta_i|^p}.$$

p = 1

p = 1/2

#### **Generalized Gaussian prior**

$$y = X\beta + \varepsilon$$

 $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n).$  $\boldsymbol{\mathcal{I}}_i \sim_{iid} \mathrm{GGD}(p, \lambda), \lambda > 0, p > 0.$ 

$$p(y|\beta,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{\|y-X\beta\|^2}{2\sigma^2}}$$
$$\pi(\beta|p,\lambda) = \prod_{i=1}^p \frac{p\sqrt[p]{\lambda}}{2\Gamma(1/p)} e^{-\lambda|\beta_i|^p}.$$



p = 1

Hyperparameters  $(\sigma, p, \lambda)$  known, the MAP reads :

$$\operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \left\| y - X\beta \right\|^{2} + \lambda \left\| \beta \right\|_{p}^{p}. \qquad \left\| \beta \right\|_{p}^{p} = \sum_{i=1}^{p} \left| \beta_{i} \right|^{p}$$

- Solution For p = 1, we recover the Lasso (see several previous MCs).
- Solution For X unitary, the MAP corresponds to computing  $prox_{\lambda\sigma^2|\cdot|^p}(y_i)$ , which has a closed form or can be computed efficiently.
- Except for p = 2, the MMSE does not have a closed-form even when X is unitary.

- MAP Argmin  $-\log p(y|\beta, \theta_e) \log \pi(\beta)$  $\beta \in \mathbb{R}^p$
- PMLE Argmin  $-\log p(y|\beta, \theta_e) + \psi(\beta)$  $\beta \in \mathbb{R}^p$

- MAP Argmin  $-\log p(y|\beta, \theta_e) \log \pi(\beta)$  $\beta \in \mathbb{R}^p$
- PMLE Argmin  $-\log p(y|\beta, \theta_e) + \psi(\beta)$  $\beta \in \mathbb{R}^p$

- MAP Argmin  $-\log p(y|\beta, \theta_e) \log \pi(\beta)$  $\beta \in \mathbb{R}^p$
- PMLE Argmin  $-\log p(y|\beta, \theta_e) + \psi(\beta)$  $\beta \in \mathbb{R}^p$

- PMLE with penalty  $\psi$  is MAP with prior density  $\exp(-\psi(\beta))/Z$  if  $\beta$  is assumed Gibbsian.
- But this is only one possible Bayesian interpretation.
- There are other possible Bayesian interpretations.

$$y = \beta + \varepsilon \qquad \varepsilon \sim \mathcal{N}(0, \sigma^{2}\mathbf{I}_{n})$$
$$\widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} - \log \pi(\beta)$$
$$\widehat{\beta}_{\mathrm{MMSE}}^{\pi} = \mathbb{E} \left[\beta | y\right]$$
$$\widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} + \psi(\beta)$$

$$y = \beta + \varepsilon \qquad \varepsilon \sim \mathcal{N}(0, \sigma^{2}\mathbf{I}_{n})$$
$$\widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} - \log \pi(\beta)$$
$$\widehat{\beta}_{\mathrm{MMSE}}^{\pi} = \mathbb{E} \left[\beta | y\right]$$
$$\widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} + \psi(\beta)$$

$$\exists \psi \quad \text{s.t.} \quad \widehat{\beta}_{\text{PMLE}}^{\psi} = \widehat{\beta}_{\text{MMSE}}^{\pi} \text{ for some } \pi(\beta) \neq \exp(-\psi(\beta))/Z \text{ in general.}$$

$$y = \beta + \varepsilon \qquad \varepsilon \sim \mathcal{N}(0, \sigma^{2}\mathbf{I}_{n})$$
$$\widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} - \log \pi(\beta)$$
$$\widehat{\beta}_{\mathrm{MMSE}}^{\pi} = \mathbb{E} \left[\beta|y\right]$$
$$\widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} + \psi(\beta)$$

$$\exists \psi \quad \text{s.t.} \quad \widehat{\beta}^{\psi}_{\text{PMLE}} = \widehat{\beta}^{\pi}_{\text{MMSE}} \text{ for some } \pi(\beta) \neq \exp(-\psi(\beta))/Z \text{ in general.}$$
  
$$\forall \pi, \ \exists \psi \quad \text{s.t.} \quad \widehat{\beta}^{\pi}_{\text{MMSE}} = \widehat{\beta}^{\nu}_{\text{MAP}}, \ \nu(\beta) = \exp(-\psi(\beta))/Z.$$

 $y = \beta + \varepsilon \qquad \varepsilon \sim \mathcal{N}(0, \sigma^{2}\mathbf{I}_{n})$  $\widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} - \log \pi(\beta)$  $\widehat{\beta}_{\mathrm{MMSE}}^{\pi} = \mathbb{E} \left[\beta | y\right]$  $\widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \|y - \beta\|^{2} + \psi(\beta)$ 

- Actually, the Bayesian interpretation may lead to an apparent paradox as in, e.g., Lasso :
  - The Laplacian prior is not heavy-tailed, hence not a wise prior to promote sparsity.
  - Yet we have strong theoretical guarantees that Lasso has excellent performance to recover sparse vectors (reason lies in blessings of high-dimensional geometry as seen in the last MC).
- A variety of Bayesian priors promoting sparsity have been developed in the sparse representation literature, though they are not log-concave and enjoy
   guarantees only for specific settings.

### GLM

- *n* independent observations  $y_i \sim \mathcal{B}(k_i, p_i)$ .
- $\checkmark$   $p_i = h(X^i\beta), h : \mathbb{R} \to [0,1]$  is the link function (a cdf).
  - **Solution** Logit : logistic cdf  $h(t) = \frac{1}{1+e^t}$ .
  - Probit : standard normal cdf  $h = \Phi$ .

 $X^i: i-$ th row of X

## GLM

- *n* independent observations  $y_i \sim \mathcal{B}(k_i, p_i)$ .
- $p_i = h(X^i\beta)$ ,  $h : \mathbb{R} \to [0, 1]$  is the link function (a cdf).  $X^i : i$ -th row of X
  - **Solution** Logit : logistic cdf  $h(t) = \frac{1}{1+e^t}$ .
  - Probit : standard normal cdf  $h = \Phi$ .
- **Solution** Estimate  $\beta$  from y.

## GLM

- *n* independent observations  $y_i \sim \mathcal{B}(k_i, p_i)$ .
- $\checkmark$   $p_i = h(X^i \beta)$ ,  $h : \mathbb{R} \to [0, 1]$  is the link function (a cdf).
  - Logit : logistic cdf  $h(t) = \frac{1}{1+e^t}$ .
  - Solution: Probit : standard normal cdf  $h = \Phi$ .
- Solution Estimate  $\beta$  from y.
- Likelihood :

$$p(y|\beta) = \prod_{i=1}^{n} h(X^{i}\beta)^{y_{i}} (1 - h(X^{i}\beta))^{k_{i} - y_{i}}$$

**Posterior of**  $\beta$  :

$$p(\beta|y) \propto \prod_{i=1}^{n} h(X^i\beta)^{y_i} (1 - h(X^i\beta))^{k_i - y_i} \pi(\beta).$$

Largely intractable : no closed form even with a flat prior.

 $X^i: i-$ th row of X

• *n* independent observations  $y_i \sim \mathcal{B}(k_i, h(X^i\beta))$ .

 $X^i: i-{\operatorname{th}} \operatorname{row} \operatorname{of} X$ 

• Logit :  $h(t) = \frac{1}{1+e^t}$ , hence  $X^i\beta = -\log(p_i/(1-p_i))$ .

The likelihood is

$$p(y|\beta) = e^{-(\sum_{i=1}^{n} y_i X^i)\beta} \prod_{i=1}^{n} (1 + \exp(-X^i \beta))^{-k_i}.$$

• *n* independent observations  $y_i \sim \mathcal{B}(k_i, h(X^i\beta))$ .

 $X^i: i-$ th row of X

• Logit :  $h(t) = \frac{1}{1+e^t}$ , hence  $X^i\beta = -\log(p_i/(1-p_i))$ .

The likelihood is

$$p(y|\beta) = e^{-(\sum_{i=1}^{n} y_i X^i)\beta} \prod_{i=1}^{n} (1 + \exp(-X^i\beta))^{-k_i}.$$

Posterior largely intractable.

But  $X^i\beta = \log(p_i/(1-p_i) \Rightarrow \text{large } k_i \text{ normal approximation to the binomial.}$ 

• *n* independent observations  $y_i \sim \mathcal{B}(k_i, h(X^i\beta))$ .

 $X^i: i-$ th row of X

• Logit :  $h(t) = \frac{1}{1+e^t}$ , hence  $X^i\beta = -\log(p_i/(1-p_i))$ .

The likelihood is

$$p(y|\beta) = e^{-\left(\sum_{i=1}^{n} y_i X^i\right)\beta} \prod_{i=1}^{n} (1 + \exp(-X^i\beta))^{-k_i}.$$

Posterior largely intractable.

But  $X^i\beta = \log(p_i/(1-p_i) \Rightarrow \text{large } k_i \text{ normal approximation to the binomial.}$ 

- $\widehat{p}_i \stackrel{\text{def}}{=} y_i / k_i \text{ are independent and } \widehat{p}_i \stackrel{\rightarrow}{\to} \mathcal{N}(p_i, p_i(1-p_i)/k_i).$ 
  - By the Delta theorem,  $(\widehat{ heta}_i heta_i)\sqrt{k_i\widehat{p}_i(1-\widehat{p}_i)}$  are independent and

$$(\widehat{\theta}_i - \theta_i) \sqrt{k_i \widehat{p}_i (1 - \widehat{p}_i)} \xrightarrow[d]{} \mathcal{N}(0, 1) \qquad \qquad \begin{array}{l} \theta_i \stackrel{\text{def}}{=} -\log(p_i/(1 - p_i)) \\ \widehat{\theta}_i \stackrel{\text{def}}{=} -\log(\widehat{p}_i/(1 - \widehat{p}_i)) \end{array}$$

In independent observations  $y_i \sim \mathcal{B}(k_i, h(X^i\beta))$ .

 $X^i: i-$ th row of X

• Logit :  $h(t) = \frac{1}{1+e^t}$ , hence  $X^i\beta = -\log(p_i/(1-p_i))$ .

The likelihood is

$$p(y|\beta) = e^{-\left(\sum_{i=1}^{n} y_i X^i\right)\beta} \prod_{i=1}^{n} (1 + \exp(-X^i\beta))^{-k_i}.$$

Posterior largely intractable.

But  $X^i\beta = \log(p_i/(1-p_i) \Rightarrow \text{large } k_i \text{ normal approximation to the binomial.}$ 

- $\widehat{p_i} \stackrel{\text{def}}{=} y_i / k_i \text{ are independent and } \widehat{p_i} \stackrel{\text{def}}{\to} \mathcal{N}(p_i, p_i(1-p_i)/k_i).$ 
  - By the Delta theorem,  $(\widehat{ heta}_i heta_i)\sqrt{k_i\widehat{p}_i(1-\widehat{p}_i)}$  are independent and

$$(\widehat{\theta}_i - \theta_i) \sqrt{k_i \widehat{p}_i (1 - \widehat{p}_i)} \xrightarrow[d]{} \mathcal{N}(0, 1) \qquad \qquad \begin{array}{l} \theta_i \stackrel{\text{def}}{=} -\log(p_i/(1 - p_i)) \\ \widehat{\theta}_i \stackrel{\text{def}}{=} -\log(\widehat{p}_i/(1 - \widehat{p}_i)) \end{array}$$

Approximate large sample likelihood is a weighted least-square

$$p(y|\beta) = \frac{1}{(2\pi)^{n/2}} e^{-\frac{\sum_{i=1}^{n} \sqrt{k_i \hat{p}_i (1-\hat{p}_i)} (\hat{p}_i - X^i \beta)^2}{2}}$$

Back to Gaussian (weighted) linear regression.

### **Probit model**

• *n* independent observations  $y_i \sim \mathcal{B}(k_i, h(X^i\beta))$ .

 $X^i: i-$ th row of X

- Logit :  $h = \Phi$ , standard normal cdf.
- **Solution** The posterior of  $\beta$

$$p(\beta|y) \propto \prod_{i=1}^{n} \Phi(X^{i}\beta)^{y_{i}} (1 - \Phi(X^{i}\beta))^{k_{i}-y_{i}} \pi(\beta).$$

- The likelihood and posterior even less tractable that for the logistic.
- One can also use the Delta theorem to get a normal approximation, though less precise that for the logistic.
- Otherwise MC sampling through latent variables.

#### **Bayesian computations**

- Bayesian inference requires computation of moments (e.g. mean, variance), modes and quantiles (e.g. medians) of the posterior distribution.
- MAP :
  - Involves an solving an optimization problem.
  - Closed-form : for some (interesting cases).
- MMSE :
  - Involves an integration problem.
  - Closed-form : rather an exception than a rule.
  - Analytical approximations (Laplace, saddlepoint, etc) : requires smoothness.
  - Numerical quadrature : unrealistic in high-dimensional settings.
  - Monte-Carlo methods.

#### MAP

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{Argmin}} - \log p(y|\beta, \theta_e) - \log \pi(\beta)$$

- A structured composite optimization problem.
- A whole area in its own :
  - The key is to exploit the properties of each term individually and separately.
  - A rich literature including proximal splitting for large-scale data.
  - Previous MCs on the subject.

#### MAP

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{Argmin}} - \log p(y|\beta, \theta_e) - \log \pi(\beta)$$

- A structured composite optimization problem.
- A whole area in its own :
  - The key is to exploit the properties of each term individually and separately.
  - A rich literature including proximal splitting for large-scale data.
  - Previous MCs on the subject.

#### Example (Linear regression with GGD prior)

Hyperparameters  $(\sigma, p, \lambda)$  known, the MAP reads :

$$\operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \frac{1}{2\sigma^{2}} \left\| y - X\beta \right\|^{2} + \lambda \left\| \beta \right\|_{p}^{p}, \quad p \ge 0$$

Forward-Backward splitting :

$$\beta_{k+1} \in \operatorname{prox}_{\lambda\sigma^2\gamma \|\cdot\|_p^p} \left(\beta_k + \gamma X^\top (y - X\beta_k)\right), \gamma \in ]0, 1/\|X\|^2].$$

#### *Convergence guarantees :*

- ${}$   $p \geq 1$  : to a global minimizer ( $\gamma$  even to  $< 2/\left\|X\right\|^2$ .
- **S**  $p \in [0, 1[$ : in general to a critical point (*o*-minimal geometry arguments), and a global minimizer if started sufficiently close to it.

MC'17-17

#### **Laplace approximation**

#### Goal is to compute

$$\mathbb{E}\left[g(\beta)|y\right] = \frac{\int_{\mathbb{R}^p} g(\beta) p(y|\beta) \pi(\beta) d\beta}{\int_{\mathbb{R}^p} p(y|\beta) \pi(\beta) d\beta}$$

where g, p and  $\pi$  are smooth enough functions of  $\beta$ .

Approximately evaluate the following integral for large n

$$I \stackrel{\text{def}}{=} \int_{\mathbb{R}^p} q(\beta) \exp(-nh(\beta)) d\beta,$$

h and q are smooth enough around  $\widehat{\beta}$ , the unique minimizer of h at  $\widehat{\beta}$ .

#### **Laplace approximation**

Goal is to compute

$$\mathbb{E}\left[g(\beta)|y\right] = \frac{\int_{\mathbb{R}^p} g(\beta) p(y|\beta) \pi(\beta) d\beta}{\int_{\mathbb{R}^p} p(y|\beta) \pi(\beta) d\beta}$$

where g, p and  $\pi$  are smooth enough functions of  $\beta$ .

Approximately evaluate the following integral for large n

$$I \stackrel{\text{def}}{=} \int_{\mathbb{R}^p} q(\beta) \exp(-nh(\beta)) d\beta,$$

h and q are smooth enough around  $\widehat{\beta}$ , the unique minimizer of h at  $\widehat{\beta}$ .

The Laplace method involves a Taylor expansion of q and h around  $\widehat{eta}$  :

$$\begin{split} I &= \exp(-nh(\widehat{\beta})) \int_{\mathbb{R}^p} (q(\widehat{\beta}) + (\beta - \widehat{\beta}) \nabla q(\widehat{\beta}) + \frac{1}{2} (\beta - \widehat{\beta})^\top \nabla^2 q(\widehat{\beta}) (\beta - \widehat{\beta}) + \cdots) e^{-\frac{n(\beta - \widehat{\beta})^\top \nabla^2 h(\widehat{\beta}) (\beta - \widehat{\beta})}{2}} d\beta \\ &= \exp(-nh(\widehat{\beta})) \left( (2\pi)^{p/2} n^{-p/2} \det(\nabla^2 h(\widehat{\beta}))^{-1/2} \right) \left( q(\widehat{\beta}) + O(n^{-1}) \right) \end{split}$$

Apply to the numerator (resp. denominator) of  $\mathbb{E}[g(\beta)|y]$ , with q = g (resp. q = 1) and  $h(\beta) = -\log(p(y|\beta)) - \log(\pi(\beta))$ :

$$\mathbb{E}\left[g(\beta)|y\right] = g(\widehat{\beta})\left(1 + O(n^{-1})\right).$$

MMSE necessitates to solve the MAP supposed to be unique.

### **Tierney-Kanade approximation**

#### Goal is to compute

$$\mathbb{E}\left[g(\beta)|y\right] = \frac{\int_{\mathbb{R}^p} g(\beta) p(y|\beta) \pi(\beta) d\beta}{\int_{\mathbb{R}^p} p(y|\beta) \pi(\beta) d\beta}$$

where g, p and  $\pi$  are smooth enough functions of  $\beta$ , g positive.

$$I \stackrel{\text{def}}{=} \int_{\mathbb{R}^p} q(\beta) \exp(-nh(\beta)) d\beta$$
$$= \exp(-nh(\widehat{\beta})) \left( (2\pi)^{p/2} n^{-p/2} \det(\nabla^2 h(\widehat{\beta}))^{-1/2} \right) \left( q(\widehat{\beta}) + O(n^{-1}) \right)$$

Suppose  $\hat{\beta}$  is the unique minimizer of  $nh(\beta) = -\log(p(y|\beta)) - \log(\pi(\beta))$ , and  $\hat{\beta}^*$  is the unique minimizer of  $nh^* = -\log(p(y|\beta)) - \log(\pi(\beta)) - \log(g(\beta))$ .

Apply to the numerator (resp. denominator) of  $\mathbb{E}\left[g(\beta)|y
ight]$ , with  $h^*$  (resp. h) and q=1:

$$\mathbb{E}\left[g(\beta)|y\right] = \sqrt{\frac{\det(\nabla^2 h(\widehat{\beta}))}{\det(\nabla^2 h^*(\widehat{\beta^*}))}} \exp\left(n(h(\widehat{\beta}) - h^*(\widehat{\beta^*}))\right) \left(1 + O(n^{-2})\right).$$

2nd-order approximation, but necessitates to solve 2 non-degenerate optimization.

Availability of all-purpose MC simulation approaches have rendered these methods less used.

### **Monte-Carlo sampling**

Consider the expectation wrt to measure  $\mu$  on  $\mathcal Y$  :

$$\mathbb{E}\left[g(Y)\right] = \int_{\mathcal{Y}} g(y)\mu(dy).$$

Statistical sampling is a natural way to evaluate this integral :

Solution Generate m iid observations  $y_1, y_2, \cdots, y_m$  from  $\mu$  and compute

$$\bar{g}_m = \frac{1}{m} \sum_{i=1}^m g(y_i).$$

- Solution By the LLN,  $\bar{g}_m$  converges in probability (or even a.s.) to  $\mathbb{E}\left[g(Y)\right]$ .
- This justifies  $\overline{g}_m$  as an approximation for  $\mathbb{E}\left[g(Y)\right]$  for large m.
- This suggests to use MC sampling to approximate the MMSE  $\mathbb{E}\left[eta|y
  ight]$ .
- One has to sample from the posterior distribution.
- Bayesian posterior distributions are generally non-standard which may not easily allow sampling from them.

### **Monte-Carlo sampling**

Consider the MMSE :

$$\mathbb{E}\left[\beta|y\right] = \frac{\int_{\mathbb{R}} \theta \phi(y;\beta,\sigma^2) \pi(\beta) d\beta}{\int_{\mathbb{R}} \phi(y;\beta,\sigma^2) \pi(\beta) d\beta},$$

 $\pi$  is heavy-tailed and easy to sample from.

- Two alternatives :
  - 1. Ratio of expectations of  $\theta \pi(\beta)$  and  $\pi(\beta)$  wrt to  $\mathcal{N}(y, \sigma^2)$ .
    - Sample from  $\mathcal{N}(y, \sigma^2)$  and approximate these expectations to get an approximation of  $\mathbb{E} \left[\beta | y\right]$ .
    - Invise as  $\pi$  is heavy-tailed while the Gaussian concentrates around its mean, hence missing the contribution from the tails.
  - 2. Ratio of expectations of  $\theta \phi(y; \beta, \sigma^2)$  and  $\phi(y; \beta, \sigma^2)$  wrt to  $\pi$ .
    - Sample from  $\pi$  and approximate these expectations to get an approximation of  $\mathbb{E} \left[\beta | y\right]$ .
    - Solution Not satisfactory either as  $p(\beta|y)$  is not as heavy-tailed as  $\pi$ .
- Both alternatives would lead to slow convergence of the sample mean.
  - Rather sample directly from  $p(\beta|y)$  itself.

### **Importance sampling**

Consider the expectation wrt to measure  $\mu$  on  ${\mathcal Y}$  :

$$\mathbb{E}_{\mu}\left[g(Y)\right] = \int_{\mathcal{Y}} g(y)\mu(dy).$$

Suppose that it is difficult/expensive to sample from  $\mu$ , but there exists a probability measure  $\nu$  very close to  $\mu$  from which it is easy to sample.

Then

$$\mathbb{E}_{\mu}\left[g(Y)\right] = \mathbb{E}_{\nu}\left[g(Y)w(Y)\right], \qquad w = \mu/\nu$$

where  $w = \mu/\nu$  (beware of support issues).

Sample from  $\nu$  and compute sample mean of gw.

 $\bullet$  v is the importance sampling measure.

### **Importance sampling**

Consider the expectation wrt to measure  $\mu$  on  $\mathcal Y$  :

$$\mathbb{E}_{\mu}\left[g(Y)\right] = \int_{\mathcal{Y}} g(y)\mu(dy).$$

Suppose that it is difficult/expensive to sample from  $\mu$ , but there exists a probability measure  $\nu$  very close to  $\mu$  from which it is easy to sample.

Then

$$\mathbb{E}_{\mu}\left[g(Y)\right] = \mathbb{E}_{\nu}\left[g(Y)w(Y)\right], \qquad w = \mu/\nu$$

where  $w = \mu/\nu$  (beware of support issues).

Sample from  $\nu$  and compute sample mean of gw.

 $\mathbf{P}$  is the importance sampling measure.

**Example**  $y_i$  are n i.i.d.  $\mathcal{N}(\theta, \sigma^2)$ , where  $\theta$  and  $\sigma^2$  are independent,  $\theta$  has a double exponential distribution with density  $e^{-|\theta|}/2$ , and  $\sigma^2$  has the prior density of  $(1 + \sigma^2)^{-2}$ . One can show that

$$p(\theta, \sigma^2 | y) \propto f_1(\sigma^2 | \theta) f_2(\theta) e^{-|\theta|} \left(\frac{\sigma^2}{1 + \sigma^2}\right)^2$$

where  $f_1$  is the density of inverse Gamma with parameters  $(n/2 + 1, tfracn2((\theta - \bar{y})^2 + s^2), f_2$  is the n + 1 t-density, with location  $\bar{y}$  (sample mean) and scale  $\propto s$  (sample std). The tails are mostly captured in  $f_1(\sigma^2|\theta)f_2(\theta)$ , which can serve as an importance sampling density.

## **MCMC: Iterative MC sampling**

- MC methods necessitate complete determination of the sampling measure.
- Situations where posterior distributions are incompletely specified or are specified indirectly cannot be handled, e.g., only in terms of several conditional and marginal distributions.
- It turns out that it is indeed possible in such cases to adopt an iterative MC sampling scheme.
- These iterative MC procedures typically generate a random sequence with the Markov property such that this Markov chain is ergodic with the limiting distribution being the target posterior distribution.
- A whole class of such iterative procedures are dubbed Markov chain Monte Carlo (MCMC) procedures.

### **A glimpse of Markov chains**

**Definition** A sequence of random variables  $\{X_n\}_{n\geq 0}$  is a Markov chain if for any n, given  $X_n$ , the past  $\{X_j : j \leq n-1\}$  and the future  $\{X_j : j \geq n+1\}$  are independent, i.e. for any two events A and B defined respectively in terms of the past and the future,

$$P(A \cap B|X_n) = P(A|X_n)P(B|X_n),$$

**Definition** A Markov chain has a time homogeneous or stationary transition probability iff the probability distribution of  $X_{n+1}|X_n = x$ , and the past,  $\{X_j : j \le n-1\}$  depends only on x. This is specified in terms of the transition kernel P, where P(x, A) = $\Pr(X_{n+1} \in A | X_n = x)$ . If the state-space (set of values  $X_n$  can take), is countable, this reduces to specifying the transition probability matrix P,  $P_{ij} = \Pr(X_{n+1} = j | X_n = i)$ .

**Lemma** Suppose that  $\{X_n\}_{n\geq 0}$  is a Markov chain on a countable state-space with stationary transition probabilities. Then the joint probability distribution of  $\{X_n\}_{n\geq 0}$  is

$$\Pr\left(X_{i} = j_{i} : i = 0, \cdots, n\right) = \Pr\left(X_{0} = j_{0}\right) \prod_{i=1}^{n} P_{j_{i-1}j_{i}}.$$

### **A glimpse of Markov chains**

**Definition** A probability distribution  $\mu$  is called stationary or invariant for a transition probability P or the associated Markov chain  $\{X_n\}$  iff : when the probability distribution of  $X_0$  is  $\mu$  then the same is true for  $X_n$  for all  $n \ge 1$ .

**Lemma** Suppose that  $\{X_n\}_{n\geq 0}$  is a Markov chain on a state-space S with kernel P. Then a probability distribution  $\mu$  with density p is a stationary for P if

$$\int_{A} p(x) dx = \int_{S} P(x, A) p(x) dx, \forall A \subset S.$$

In the countable case :  $\mu$  is a left eigenvector of P.

**Definition** A Markov chain  $\{X_n\}_{n\geq 0}$  with a countable state space S and transition probability matrix P is said to be irreducible if for any two states i and j the probability of the Markov chain visiting j starting from i is positive. A similar notion of irreducibility can be stated for general state spaces.

### **LLN for Markov chains**

**Theorem** Let  $\{X_n\}_{n\geq 0}$  be a Markov chain with state-space S and kernel P. Further, suppose it is (Harris) irreducible and has a stationary distribution  $\mu$ . Then, for any bounded function  $g: S \to \mathbb{R}$  and for any initial distribution of  $X_0$ 

$$\frac{1}{n} \sum_{i=0}^{n-1} g(X_i) \xrightarrow{\mathcal{P}} \int_S g(x) \mu(dx).$$

### **LLN for Markov chains**

**Theorem** Let  $\{X_n\}_{n\geq 0}$  be a Markov chain with state-space S and kernel P. Further, suppose it is (Harris) irreducible and has a stationary distribution  $\mu$ . Then, for any bounded function  $g: S \to \mathbb{R}$  and for any initial distribution of  $X_0$ 

$$\frac{1}{n} \sum_{i=0}^{n-1} g(X_i) \xrightarrow{\mathcal{P}} \int_S g(x) \mu(dx).$$

**Remark** Under additional conditions (e.g. aperiodicity for countable state-space), one can also assert that the distribution of  $X_n$  converges (in an appropriate topology) to  $\mu$ .

### **LLN for Markov chains**

**Theorem** Let  $\{X_n\}_{n\geq 0}$  be a Markov chain with state-space S and kernel P. Further, suppose it is (Harris) irreducible and has a stationary distribution  $\mu$ . Then, for any bounded function  $g: S \to \mathbb{R}$  and for any initial distribution of  $X_0$ 

$$\frac{1}{n} \sum_{i=0}^{n-1} g(X_i) \xrightarrow{\mathcal{P}} \int_S g(x) \mu(dx).$$

**Remark** Under additional conditions (e.g. aperiodicity for countable state-space), one can also assert that the distribution of  $X_n$  converges (in an appropriate topology) to  $\mu$ .

### This result is the backbone of Monte-Carlo Markov Chain (MCMC) methods.

- A very general-purpose MCMC method.
- Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.

- A very general-purpose MCMC method.
- Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.
- **Inputs** : State-space S,  $\mu$  a probability measure with density p on S.  $X_0$ .

Proposal transition kernel Q with density  $q: \forall x \in S$ , easy to sample from  $q(x, \cdot)$ .

**Compute:** Acceptance probability  $\rho : \rho(x, y) = \min\left(1, \frac{p(y)q(y,x)}{p(x)q(x,y)}\right), \forall (x, y) \text{ s.t. } p(x)q(x,y) > 0.$ 

#### repeat

until convergence;

A very general-purpose MCMC method.

Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.

**Inputs** : State-space S,  $\mu$  a probability measure with density p on S.  $X_0$ .

Proposal transition kernel Q with density q :  $orall x \in S$ , easy to sample from  $q(x, \cdot)$ .

**Compute:** Acceptance probability  $\rho : \rho(x, y) = \min\left(1, \frac{p(y)q(y,x)}{p(x)q(x,y)}\right), \forall (x, y) \text{ s.t. } p(x)q(x, y) > 0.$ 

#### repeat

until convergence;

**Proposition** (i)  $\{X_n\}_{n\geq 0}$  is a Markov chain on S.

(ii)  $\mu$  is a stationary/invariant probability distribution for  $\{X_n\}_{n>0}$ .

(iii) If Q is irreducible on S, then so is  $\{X_n\}_{n\geq 0}$  and the LLN on Markov chains applies.

A very general-purpose MCMC method.

Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.

**Inputs** : State-space S,  $\mu$  a probability measure with density p on S.  $X_0$ .

Proposal transition kernel Q with density  $q : \forall x \in S$ , easy to sample from  $q(x, \cdot)$ .

**Compute:** Acceptance probability  $\rho : \rho(x, y) = \min\left(1, \frac{p(y)q(y,x)}{p(x)q(x,y)}\right), \forall (x, y) \text{ s.t. } p(x)q(x,y) > 0.$ 

#### repeat

until convergence;

- A distinctive feature of MH for Bayesian inference is that it is enough to know p up to a multiplicative constant : acceptance probability depends on ratios.
- Conclusion : the normalization constant in the posterior density is of no importance at all in the MH algorithm.

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

**Proposition** (i) The Gibbs sampler is a special case of MH.

(ii)  $\{X_n\}_{n\geq 0}$  is an irreducible Markov chain on S.

(iii)  $\mu$  is a stationary/invariant probability distribution for  $\{X_n\}_{n>0}$ .

(iv) The LLN on Markov chains applies.

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

**Proposition** (i) The Gibbs sampler is a special case of MH.

(ii)  $\{X_n\}_{n>0}$  is an irreducible Markov chain on *S*.

(iii)  $\mu$  is a stationary/invariant probability distribution for  $\{X_n\}_{n>0}$ .

(iv) The LLN on Markov chains applies.

- Is popular for hierarchical Bayesian modeling.
  - e.g. in Markov random fields with Ising model.
- Improved estimators can be obtained via variance-reduction (Rao-Blackwell theorem).

A Langevin diffusion X in  $\mathbb{R}^p$ , is a homogeneous Markov process defined by the SDE

$$dX(t) = \frac{1}{2} \rho(X(t)) dt + \frac{\text{Diffusion}}{dW(t)}, \ t > 0, \ X(0) = x_0,$$

- $\blacksquare$  W is a p-dimensional Brownian process.

A Langevin diffusion X in  $\mathbb{R}^p$ , is a homogeneous Markov process defined by the SDE

$$dX(t) = \frac{1}{2} \rho(X(t)) dt + \frac{\text{Diffusion}}{dW(t)}, \ t > 0, \ X(0) = x_0,$$

- ${\it I}$   $ho=-\nabla\log\mu,\mu$  is everywhere non-zero and suitably smooth target density function on  $\mathbb{R}^p$ ;
  - $\blacktriangleright$  W is a p-dimensional Brownian process.
- Under mild assumptions, the SDE has a unique strong solution and X(t) has a stationary distribution with density precisely  $\mu$ .
- Opens the door to approximating integrals  $\int_{\mathbb{R}^p} g(\theta) \mu(\theta) d\theta$  by the average value of the Langevin diffusion path

$$\frac{1}{T}\int_0^T g(X(t))dt, \quad \text{for large enough } T.$$

Euler (forward) discretization

$$X_{n+1} = X_n + \frac{\delta}{2}\rho(X_n) + \sqrt{\delta}Z_n, \quad X_0 = \mathbf{x}_0,$$
$$= X_n - \frac{\delta}{2}\nabla\log\mu(X_n) + \sqrt{\delta}Z_n$$

Euler (forward) discretization

$$X_{n+1} = X_n + \frac{\delta}{2}\rho(X_n) + \sqrt{\delta}Z_n, \quad X_0 = \mathbf{x}_0,$$
$$= X_n - \frac{\delta}{2}\nabla\log\mu(X_n) + \sqrt{\delta}Z_n$$

- ${}$   $\delta>0$  : the discretization step-size ;
- - The Girsanov formula implies :

$$\begin{split} X^{\delta}(t) &\stackrel{\text{def}}{=} X_0 + \frac{1}{2} \int_0^t \rho(\overline{X}(s)) ds + \int_0^t dW(s) ds, \\ \overline{X}(t) &= X_n \text{ for } t \in [n\delta, (n+1)\delta[. \end{split}$$

$$\operatorname{KL}\left(\mu(\{X(t):t\in[0,T]\}),\mu(\{X^{\delta}(t):t\in[0,T]\})\right)\xrightarrow[h\to 0]{}0.$$

The average value can then be naturally approximated via

$$\frac{\delta}{T} \sum_{n=0}^{\lfloor T/\delta \rfloor} X_n.$$

MC'17-31

Euler (forward) discretization

$$X_{n+1} = X_n + \frac{\delta}{2}\rho(X_n) + \sqrt{\delta}Z_n, \quad X_0 = \mathbf{x}_0,$$
$$= X_n - \frac{\delta}{2}\nabla\log\mu(X_n) + \sqrt{\delta}Z_n$$

 $X^{\delta}(t) \stackrel{\text{def}}{=} X_0 + \frac{1}{2} \int_0^t \rho(\overline{X}(s)) ds + \int_0^t dW(s) ds, \qquad \overline{X}(t) = X_n \text{ for } t \in [n\delta, (n+1)\delta[.$ 

**Theorem** Assume that  $\rho$  is locally Lipchitz continuous and verifies an appropriate growth condition. Then,

$$\left\| \mathbb{E} \left[ X^{\delta}(T) \right] - \mathbb{E} \left[ X(T) \right] \right\|_{2} \le \mathbb{E} \left[ \sup_{0 \le t \le T} \left\| X^{\delta}(t) - X(t) \right\|_{2} \right] \xrightarrow{\delta \to 0} 0.$$

If  $\rho$  is uniformly Lipschitz continuous, the optimal consistency rate  $\delta^{1/2}$  is achieved.

### Take-away messages

- Bayesian modeling is a flexible paradigm.
- Bayesian inference involves optimization and integration.
- Bayesian interpretation is not universal: all PMLE are NOT MAP.
- Bayesian computation is essentially easier for MAP.
- For MMSE, MCMC methods are general and versatile, though scaling with dimension can be an issue.
- A variety of applications: signal and image processing, communication, biostatistics, classification, machine learning.

https://fadili.users.greyc.fr/

# Thanks Any questions ?