Bayesian Inference

Jalal Fadili

Normandie Université-ENSICAEN, GREYC
Mathematical coffees 2017

ÉCOLE PUBLIQUE D INGÉNIEU

Linear regression

- X is the design matrix (i.e. its columns are the predictors) :
- β unknown regression vector: Has some prior structure.
- $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right)$ independent of β.
- Several prior MCs on this model.
- In the Bayesian paradigm : random model on β.

Linear regression

Inference : estimation and testing of $\left(\beta, \sigma^{2}\right)$ from data (X, y)
X is the design matrix (i.e. its columns are the predictors) :

- β unknown regression vector: Has some prior structure.
- $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right)$ independent of β.
- Several prior MCs on this model.
- In the Bayesian paradigm : random model on β.

Likelihood function

$$
y=X \beta+\varepsilon \quad \text { For simplicity, } \operatorname{rank}(X)=p
$$

- Additive White Gaussian noise :

$$
\begin{aligned}
Y \mid\left(\beta, \sigma^{2}\right) \sim \mathcal{N}\left(X \beta, \sigma^{2} \mathrm{I}_{n}\right) & \begin{array}{ll}
\|z\|^{2} & =z^{\top} z \\
\beta_{\mathrm{ols}} & =X^{+} y \\
y_{\mathrm{ols}} & =X \beta_{\mathrm{ols}} \\
p\left(y \mid \beta, \sigma^{2}\right)= & \frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|y-X \beta\|^{2}}{2 \sigma^{2}}\right) \\
& =\operatorname{Proj}_{\operatorname{Im}(X)} y \\
= & \frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\left\|y-y_{\mathrm{ols}}\right\|^{2}+\left\|X\left(\beta-\beta_{\mathrm{ols}}\right)\right\|^{2}}{2 \sigma^{2}}\right) \\
=\phi\left(y ; y_{\mathrm{ols}}, \sigma^{2}\right) \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) .
\end{array}
\end{aligned}
$$

Likelihood function

$$
y=X \beta+\varepsilon \quad \text { For simplicity, } \operatorname{rank}(X)=p
$$

- Additive White Gaussian noise :

$$
\begin{array}{rlrl}
Y \mid\left(\beta, \sigma^{2}\right) \sim \mathcal{N}\left(X \beta, \sigma^{2} \mathrm{I}_{n}\right) & & \begin{array}{l}
\|z\|^{2} \\
\beta_{\mathrm{ols}}= \\
y_{\mathrm{ols}}
\end{array}= \\
p\left(y \mid \beta, \sigma^{2}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|y-X \beta\|^{2}}{2 \sigma^{2}}\right) & =\mathrm{I} \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\left\|y-y_{\mathrm{ols}}\right\|^{2}+\left\|X\left(\beta-\beta_{\mathrm{ols}}\right)\right\|^{2}}{2 \sigma^{2}}\right) \\
& =\phi\left(y ; y_{\mathrm{ols}}, \sigma^{2}\right) \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) . &
\end{array}
$$

- $\left(\beta_{\mathrm{ols}}, y-y_{\mathrm{ols}}\right)$ are jointly sufficient statistics for $\left(\beta, \sigma^{2}\right)$.
- Moreover,

$$
\begin{aligned}
\beta_{\mathrm{ols}} \mid\left(\beta, \sigma^{2}\right) & \sim \mathcal{N}\left(\beta, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) \\
\text { independent of }\left\|y-y_{\mathrm{ols}}\right\|^{2} \mid \sigma^{2} & \sim \sigma^{2} \chi_{n-p}^{2}
\end{aligned}
$$

Jeffrey's prior

$$
y=X \beta+\varepsilon \quad \text { For simplicity, } \operatorname{rank}(X)=p
$$

- Take the (Jeffrey's) prior :

$$
\pi\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}
$$

- The joint posterior is

$$
\begin{aligned}
p\left(\beta, \sigma^{2} \mid y\right) & =\frac{p\left(y \mid \beta, \sigma^{2}\right) \pi\left(\beta, \sigma^{2}\right)}{p(y)} \\
& =\frac{\phi\left(y ; y_{\mathrm{ols}}, \sigma^{2}\right) \pi\left(\beta, \sigma^{2}\right)}{p(y)} \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) \\
& =p\left(\sigma^{2} \mid\left\|y-y_{\mathrm{ols}}\right\|^{2}\right) \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right)
\end{aligned}
$$

deffeey S Dioion

$$
y=X \beta+\varepsilon \quad \text { For simplicity, } \operatorname{rank}(X)=p
$$

- Take the (Jeffrey's) prior :

$$
\pi\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}
$$

- The joint posterior is

$$
\begin{aligned}
& \beta_{\mathrm{ols}}=X^{+} y \\
& y_{\mathrm{ols}}=X \beta_{\mathrm{ols}}
\end{aligned}
$$

$$
p\left(\beta, \sigma^{2} \mid y\right)=p\left(\sigma^{2} \mid\left\|y-y_{\mathrm{ols}}\right\|^{2}\right) \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) . \quad=\operatorname{Proj}_{\operatorname{Im}(X)} y
$$

- Integrating out β, the marginal posterior of σ^{2} is \propto inverse $-\chi_{n-p}^{2}$, i.e.

$$
\begin{aligned}
p\left(\sigma^{2} \mid y\right) & =p\left(\sigma^{2} \mid \widehat{r}^{2}\right) \quad\left(\widehat{r}^{2} \stackrel{\text { def }}{=}\left\|y-y_{\mathrm{ols}}\right\|^{2}\right) \\
& \propto p\left(\widehat{r}^{2} \mid \sigma^{2}\right) \pi\left(\sigma^{2}\right) \propto \frac{1}{\sigma^{2}} p_{\sigma^{2} \chi_{n-p}^{2}}\left(\widehat{r}^{2}\right) \\
& \propto \frac{1}{\sigma^{4}} p_{\chi_{n-p}^{2}}\left(\widehat{r}^{2} / \sigma^{2}\right) \propto \frac{\widehat{r}^{4}}{\sigma^{4}} p_{1 / \chi_{n-p}^{2}}\left(\sigma^{2} / \widehat{r}^{2}\right)
\end{aligned}
$$

Jeffrey's prior

$$
y=X \beta+\varepsilon \quad \text { For simplicity, } \operatorname{rank}(X)=p
$$

- Take the (Jeffrey's) prior :

$$
\pi\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}
$$

- The joint posterior is

$$
\begin{aligned}
& \beta_{\mathrm{ols}}=X^{+} y \\
& y_{\mathrm{ols}}=X \beta_{\mathrm{ols}}
\end{aligned}
$$

$$
p\left(\beta, \sigma^{2} \mid y\right)=p\left(\sigma^{2} \mid\left\|y-y_{\mathrm{ols}}\right\|^{2}\right) \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) . \quad=\operatorname{Proj}_{\operatorname{Im}(X)} y
$$

- Integrating out σ^{2}, the marginal posterior of β is multivariate t_{n-p}, i.e.

$$
p(\beta \mid y)=\frac{\Gamma(n / 2) \operatorname{det}\left(X^{\top} X\right)^{1 / 2} \widehat{\sigma}^{-p}}{\pi^{p / 2} \Gamma((n-p) / 2)(n-p)^{p / 2}}\left(1+\frac{\left\|X\left(\beta-\beta_{\mathrm{ols}}\right)\right\|^{2}}{(n-p) \widehat{\sigma}^{2}}\right)^{-n / 2}
$$

$\widehat{\sigma}^{2} \stackrel{\text { def }}{=}\left\|y-y_{\text {ols }}\right\|^{2} /(n-p)$ (unbiased estimator of the variance).

Jeffrey's prior

$$
y=X \beta+\varepsilon \quad \text { For simplicity, } \operatorname{rank}(X)=p
$$

- Take the (Jeffrey's) prior :

$$
\pi\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}
$$

- The joint posterior is

$$
\begin{aligned}
& \beta_{\mathrm{ols}}=X^{+} y \\
& y_{\mathrm{ols}}=X \beta_{\mathrm{ols}}
\end{aligned}
$$

$$
p\left(\beta, \sigma^{2} \mid y\right)=p\left(\sigma^{2} \mid\left\|y-y_{\mathrm{ols}}\right\|^{2}\right) \phi\left(\beta ; \beta_{\mathrm{ols}}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right) . \quad=\operatorname{Proj}_{\operatorname{Im}(X)} y
$$

- Integrating out σ^{2}, the marginal posterior of β is multivariate t_{n-p}, i.e.

$$
p(\beta \mid y)=\frac{\Gamma(n / 2) \operatorname{det}\left(X^{\top} X\right)^{1 / 2} \widehat{\sigma}^{-p}}{\pi^{p / 2} \Gamma((n-p) / 2)(n-p)^{p / 2}}\left(1+\frac{\left\|X\left(\beta-\beta_{\mathrm{ols}}\right)\right\|^{2}}{(n-p) \widehat{\sigma}^{2}}\right)^{-n / 2}
$$

$\widehat{\sigma}^{2} \stackrel{\text { def }}{=}\left\|y-y_{\text {ols }}\right\|^{2} /(n-p)$ (unbiased estimator of the variance).

- If $n \geq p+2$, the posterior mean of β is $\beta_{\text {ols }}$, i.e. the MMSE is

$$
\mathbb{E}[\beta \mid y]=\beta_{\mathrm{ols}}
$$

- The posterior mode is the same.

Gaussian prior: Wiener filter

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \Sigma_{e}\right), \Sigma_{e} \succ 0$.
- $\beta \sim \mathcal{N}\left(0, \Sigma_{b}\right), \Sigma_{b} \succ 0$.
- ε and β uncorrelated (hence independent by normality).
- Σ_{e} and Σ_{b} fixed and known.

Gaussian prior: Wiener filter

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \Sigma_{e}\right), \Sigma_{e} \succ 0$.
- $\beta \sim \mathcal{N}\left(0, \Sigma_{b}\right), \Sigma_{b} \succ 0$.
- ε and β uncorrelated (hence independent by normality).
- Σ_{e} and Σ_{b} fixed and known.

$$
\begin{aligned}
& p\left(y \mid \beta, \Sigma_{e}\right)=\phi\left(y ; X \beta, \Sigma_{e}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\Sigma_{e}\right)}} \exp \left(-\frac{\|y-X \beta\|_{\Sigma_{e}^{-1}}^{2}}{2}\right) \quad\|z\|_{\mathrm{A}}^{2}=z^{\top} \mathrm{A} z \\
& \pi\left(\beta \mid \Sigma_{b}\right)=\phi\left(\beta ; 0, \Sigma_{b}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}\left(\Sigma_{b}\right)}} \exp \left(-\frac{\|\beta\|_{\Sigma_{b}^{-1}}^{2}}{2}\right)
\end{aligned}
$$

Gaussian prior: Wiener filter

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \Sigma_{e}\right), \Sigma_{e} \succ 0$.
- $\beta \sim \mathcal{N}\left(0, \Sigma_{b}\right), \Sigma_{b} \succ 0$.
- ε and β uncorrelated (hence independent by normality).
- Σ_{e} and Σ_{b} fixed and known.

$$
\begin{aligned}
& p\left(y \mid \beta, \Sigma_{e}\right)=\phi\left(y ; X \beta, \Sigma_{e}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\Sigma_{e}\right)}} \exp \left(-\frac{\|y-X \beta\|_{\Sigma_{e}^{-1}}^{2}}{2}\right) \quad\|z\|_{\mathrm{A}}^{2}=z^{\top} \mathrm{A} z \\
& \pi\left(\beta \mid \Sigma_{b}\right)=\phi\left(\beta ; 0, \Sigma_{b}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}\left(\Sigma_{b}\right)}} \exp \left(-\frac{\|\beta\|_{\Sigma_{b}^{-1}}^{2}}{2}\right)
\end{aligned}
$$

- The posterior of β is

$$
p(\beta \mid y) \propto \phi\left(y ; X \beta, \Sigma_{e}\right) \phi\left(\beta ; 0, \Sigma_{b}\right)
$$

Gaussian prior: Wiener filter

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \Sigma_{e}\right), \Sigma_{e} \succ 0$.
- $\beta \sim \mathcal{N}\left(0, \Sigma_{b}\right), \Sigma_{b} \succ 0$.
- ε and β uncorrelated (hence independent by normality).
- Σ_{e} and Σ_{b} fixed and known.

$$
\begin{aligned}
& p\left(y \mid \beta, \Sigma_{e}\right)=\phi\left(y ; X \beta, \Sigma_{e}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\Sigma_{e}\right)}} \exp \left(-\frac{\|y-X \beta\|_{\Sigma_{e}^{-1}}^{2}}{2}\right) \quad\|z\|_{\mathrm{A}}^{2}=z^{\top} \mathrm{A} z \\
& \pi\left(\beta \mid \Sigma_{b}\right)=\phi\left(\beta ; 0, \Sigma_{b}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}\left(\Sigma_{b}\right)}} \exp \left(-\frac{\|\beta\|_{\Sigma_{b}^{-1}}^{2}}{2}\right)
\end{aligned}
$$

- The posterior of β is

$$
p(\beta \mid y) \propto \phi\left(y ; X \beta, \Sigma_{e}\right) \phi\left(\beta ; 0, \Sigma_{b}\right)
$$

Proposition Under the above Bayesian setting, The MAP and MMSE are given by

$$
\left(X^{\top} \Sigma_{e}^{-1} X+\Sigma_{b}^{-1}\right)^{-1} X^{\top} \Sigma_{e}^{-1} y=\left(\mathrm{I}_{p}-\Sigma_{b} X^{\top}\left(\Sigma_{e}+X \Sigma_{b} X^{\top}\right)^{-1} X\right) \Sigma_{b} X^{\top} \Sigma_{e}^{-1} y
$$

This also coincides with the Wiener estimator, i.e. the best linear estimator minimizing the quadratic risk.

Gaussian prior: diagonal estimation

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \Sigma_{e}\right), \Sigma_{e} \succ 0$.
- $\beta \sim \mathcal{N}\left(0, \Sigma_{b}\right), \Sigma_{b} \succ 0$.
- ε and β uncorrelated (hence independent by normality).
- Σ_{e} and Σ_{b} fixed and known.

Proposition Suppose also that X is circular convolution by a kernel h, and ε and β are wide-sense stationary zero-mean Gaussian vectors. Then, the MAP, the MMSE and the Wiener estimator of β are given by the following expression, which is coordinatewise separable in the DFT domain :

$$
\frac{\mathcal{F}(h)_{i}^{*}}{\left|\mathcal{F}(h)_{i}\right|^{2}+\frac{\left(\sigma_{\sigma}^{2}\right)_{i}}{\left(\sigma_{b}^{2}\right)_{i}}} \mathcal{F}(y)_{i},
$$

where \mathcal{F} is the DFT operator, and σ_{e}^{2} and σ_{b}^{2} are the vectors of eigenvalues of Σ_{e} and Σ_{b} respectively.

Generalized Gaussian prior

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$.
- $\beta_{i} \sim_{i i d} \operatorname{GGD}(p, \lambda), \lambda>0, p>0$.

$$
\begin{aligned}
p\left(y \mid \beta, \sigma^{2}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{-\frac{\|y-X \beta\|^{2}}{2 \sigma^{2}}} \\
\pi(\beta \mid p, \lambda) & =\prod_{i=1}^{p} \frac{p \sqrt[p]{\lambda}}{2 \Gamma(1 / p)} e^{-\lambda\left|\beta_{i}\right|^{p}} .
\end{aligned}
$$

$$
p=1
$$

$$
p=1 / 2
$$

Generalized Gaussian prior

$$
y=X \beta+\varepsilon
$$

- $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right)$.
- $\beta_{i} \sim_{i i d} \operatorname{GGD}(p, \lambda), \lambda>0, p>0$.

$$
\begin{aligned}
p\left(y \mid \beta, \sigma^{2}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{-\frac{\|y-X \beta\|^{2}}{2 \sigma^{2}}} \\
\pi(\beta \mid p, \lambda) & =\prod_{i=1}^{p} \frac{p \sqrt[p]{\lambda}}{2 \Gamma(1 / p)} e^{-\lambda\left|\beta_{i}\right|^{p}} .
\end{aligned}
$$

- Hyperparameters (σ, p, λ) known, the MAP reads :

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-X \beta\|^{2}+\lambda\|\beta\|_{p}^{p} . \quad\|\beta\|_{p}^{p}=\sum_{i=1}\left|\beta_{i}\right|^{p}
$$

- For $p=1$, we recover the Lasso (see several previous MCs).
- For X unitary, the MAP corresponds to computing $\operatorname{prox}_{\lambda \sigma^{2}|\cdot|^{p}}\left(y_{i}\right)$, which has a closed form or can be computed efficiently.
- Except for $p=2$, the MMSE does not have a closed-form even when X is unitary.

Is any PMLE a MAP?

$$
\begin{aligned}
& \text { MAP } \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)-\log \pi(\beta) \\
& \text { PMLE } \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)+\psi(\beta)
\end{aligned}
$$

Is any PMLE a MAP?

$$
\begin{aligned}
& \text { MAP } \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)-\log \pi(\beta) \\
& \text { PMLE } \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)+\psi(\beta) \\
& \text { /S any PMLE a MAP? }
\end{aligned}
$$

Is any PMLE a MAP?

$$
\begin{aligned}
& \text { MAP } \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)-\log \pi(\beta) \\
& \text { PMLE } \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)+\psi(\beta) \\
& \text { /s any PMLE a MAP? }
\end{aligned}
$$

- PMLE with penalty ψ is MAP with prior density $\exp (-\psi(\beta)) / Z$ if β is assumed Gibbsian.
- But this is only one possible Bayesian interpretation.
- There are other possible Bayesian interpretations.

Is any PMLE a MAP ?

$$
\begin{aligned}
& y=\beta+\varepsilon \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right) \\
& \widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}-\log \pi(\beta) \\
& \widehat{\beta}_{\mathrm{MMSE}}^{\pi}=\mathbb{E}[\beta \mid y] \\
& \widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}+\psi(\beta)
\end{aligned}
$$

Is any PMLE a MAP ?

$$
\begin{aligned}
& y=\beta+\varepsilon \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right) \\
& \widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}-\log \pi(\beta) \\
& \widehat{\beta}_{\mathrm{MMSE}}^{\pi}=\mathbb{E}[\beta \mid y] \\
& \widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}+\psi(\beta)
\end{aligned}
$$

$\exists \psi$ s.t. $\widehat{\beta}_{\mathrm{PMLE}}^{\psi}=\widehat{\beta}_{\mathrm{MMSE}}^{\pi}$ for some $\pi(\beta) \neq \exp (-\psi(\beta)) / Z$ in general.

Is any PMLE a MAP?

$$
\begin{aligned}
& y=\beta+\varepsilon \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right) \\
& \widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}-\log \pi(\beta) \\
& \widehat{\beta}_{\mathrm{MMSE}}^{\pi}=\mathbb{E}[\beta \mid y] \\
& \widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}+\psi(\beta)
\end{aligned}
$$

$\exists \psi$ s.t. $\widehat{\beta}_{\mathrm{PMLE}}^{\psi}=\widehat{\beta}_{\mathrm{MMSE}}^{\pi}$ for some $\pi(\beta) \neq \exp (-\psi(\beta)) / Z$ in general.
$\forall \pi, \quad \exists \psi$ s.t. $\quad \widehat{\beta}_{\mathrm{MMSE}}^{\pi}=\widehat{\beta}_{\mathrm{MAP}}^{\nu}, \nu(\beta)=\exp (-\psi(\beta)) / Z$.

Is any PMLE a MAP?

$$
\begin{aligned}
& y=\beta+\varepsilon \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{n}\right) \\
& \widehat{\beta}_{\mathrm{MAP}}^{\pi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}-\log \pi(\beta) \\
& \widehat{\beta}_{\mathrm{MMSE}}^{\pi}=\mathbb{E}[\beta \mid y] \\
& \widehat{\beta}_{\mathrm{PMLE}}^{\psi} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-\beta\|^{2}+\psi(\beta)
\end{aligned}
$$

- Actually, the Bayesian interpretation may lead to an apparent paradox as in, e.g., Lasso :
- The Laplacian prior is not heavy-tailed, hence not a wise prior to promote sparsity.
- Yet we have strong theoretical guarantees that Lasso has excellent performance to recover sparse vectors (reason lies in blessings of high-dimensional geometry as seen in the last MC).
- A variety of Bayesian priors promoting sparsity have been developed in the sparse representation literature, though they are not log-concave and enjoy guarantees only for specific settings.

GLM

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, p_{i}\right)$.
- $p_{i}=h\left(X^{i} \beta\right), h: \mathbb{R} \rightarrow[0,1]$ is the link function (a cdf). $\quad X^{i}: i$-th row of X
- Logit : logistic cdf $h(t)=\frac{1}{1+e^{t}}$.
- Probit : standard normal cdf $h=\Phi$.

GLM

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, p_{i}\right)$.
- $p_{i}=h\left(X^{i} \beta\right), h: \mathbb{R} \rightarrow[0,1]$ is the link function (a cdf). $\quad X^{i}: i$-th row of X
- Logit : logistic $\operatorname{cdf} h(t)=\frac{1}{1+e^{t}}$.
- Probit : standard normal cdf $h=\Phi$.
- Estimate β from y.

GLM

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, p_{i}\right)$.
- $p_{i}=h\left(X^{i} \beta\right), h: \mathbb{R} \rightarrow[0,1]$ is the link function (a cdf). $\quad X^{i}: i$-th row of X
- Logit : logistic cdf $h(t)=\frac{1}{1+e^{t}}$.
- Probit : standard normal cdf $h=\Phi$.
- Estimate β from y.
- Likelihood:

$$
p(y \mid \beta)=\prod_{i=1}^{n} h\left(X^{i} \beta\right)^{y_{i}}\left(1-h\left(X^{i} \beta\right)\right)^{k_{i}-y_{i}} .
$$

- Posterior of β :

$$
p(\beta \mid y) \propto \prod_{i=1}^{n} h\left(X^{i} \beta\right)^{y_{i}}\left(1-h\left(X^{i} \beta\right)\right)^{k_{i}-y_{i}} \pi(\beta)
$$

- Largely intractable : no closed form even with a flat prior.

Logistic regression

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, h\left(X^{i} \beta\right)\right.$.
$X^{i}: i-$ th row of X
- Logit : $h(t)=\frac{1}{1+e^{t}}$, hence $X^{i} \beta=-\log \left(p_{i} /\left(1-p_{i}\right)\right)$.
- The likelihood is

$$
p(y \mid \beta)=e^{-\left(\sum_{i=1}^{n} y_{i} X^{i}\right) \beta} \prod_{i=1}^{n}\left(1+\exp \left(-X^{i} \beta\right)\right)^{-k_{i}}
$$

Logistic regression

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, h\left(X^{i} \beta\right)\right.$.
- Logit : $h(t)=\frac{1}{1+e^{t}}$, hence $X^{i} \beta=-\log \left(p_{i} /\left(1-p_{i}\right)\right)$.
- The likelihood is

$$
p(y \mid \beta)=e^{-\left(\sum_{i=1}^{n} y_{i} X^{i}\right) \beta} \prod_{i=1}^{n}\left(1+\exp \left(-X^{i} \beta\right)\right)^{-k_{i}} .
$$

- Posterior largely intractable.
- But $X^{i} \beta=\log \left(p_{i} /\left(1-p_{i}\right) \Rightarrow\right.$ large k_{i} normal approximation to the binomial.

Logistic regression

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, h\left(X^{i} \beta\right)\right.$.
- Logit : $h(t)=\frac{1}{1+e^{t}}$, hence $X^{i} \beta=-\log \left(p_{i} /\left(1-p_{i}\right)\right)$.
- The likelihood is

$$
p(y \mid \beta)=e^{-\left(\sum_{i=1}^{n} y_{i} X^{i}\right) \beta} \prod_{i=1}^{n}\left(1+\exp \left(-X^{i} \beta\right)\right)^{-k_{i}} .
$$

- Posterior largely intractable.
- But $X^{i} \beta=\log \left(p_{i} /\left(1-p_{i}\right) \Rightarrow\right.$ large k_{i} normal approximation to the binomial.
- $\widehat{p} i \stackrel{\text { def }}{=} y_{i} / k_{i}$ are independent and $\widehat{p}_{i} \underset{d}{\rightarrow} \mathcal{N}\left(p_{i}, p_{i}\left(1-p_{i}\right) / k_{i}\right)$.
- By the Delta theorem, $\left(\widehat{\theta}_{i}-\theta_{i}\right) \sqrt{k_{i} \widehat{p}_{i}\left(1-\widehat{p}_{i}\right)}$ are independent and

$$
\left(\widehat{\theta}_{i}-\theta_{i}\right) \sqrt{k_{i} \widehat{p}_{i}\left(1-\widehat{p}_{i}\right)} \underset{d}{\rightarrow} \mathcal{N}(0,1)
$$

$$
\theta_{i} \stackrel{\text { def }}{=}-\log \left(p_{i} /\left(1-p_{i}\right)\right)
$$

$$
\widehat{\theta}_{i} \stackrel{\text { def }}{=}-\log \left(\widehat{p}_{i} /\left(1-\widehat{p}_{i}\right)\right)
$$

Logistic regression

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, h\left(X^{i} \beta\right)\right.$.
- Logit : $h(t)=\frac{1}{1+e^{t}}$, hence $X^{i} \beta=-\log \left(p_{i} /\left(1-p_{i}\right)\right)$.
- The likelihood is

$$
p(y \mid \beta)=e^{-\left(\sum_{i=1}^{n} y_{i} X^{i}\right) \beta} \prod_{i=1}^{n}\left(1+\exp \left(-X^{i} \beta\right)\right)^{-k_{i}} .
$$

- Posterior largely intractable.
- But $X^{i} \beta=\log \left(p_{i} /\left(1-p_{i}\right) \Rightarrow\right.$ large k_{i} normal approximation to the binomial.
- $\widehat{p_{i}} \stackrel{\text { def }}{=} y_{i} / k_{i}$ are independent and $\widehat{p}_{i} \underset{d}{\rightarrow} \mathcal{N}\left(p_{i}, p_{i}\left(1-p_{i}\right) / k_{i}\right)$.
- By the Delta theorem, $\left(\widehat{\theta}_{i}-\theta_{i}\right) \sqrt{k_{i} \widehat{p}_{i}\left(1-\widehat{p}_{i}\right)}$ are independent and

$$
\left(\widehat{\theta}_{i}-\theta_{i}\right) \sqrt{k_{i} \widehat{p}_{i}\left(1-\widehat{p}_{i}\right)} \underset{d}{\rightarrow} \mathcal{N}(0,1)
$$

$$
\theta_{i} \stackrel{\text { def }}{=}-\log \left(p_{i} /\left(1-p_{i}\right)\right)
$$

$$
\widehat{\theta}_{i} \stackrel{\text { def }}{=}-\log \left(\widehat{p}_{i} /\left(1-\widehat{p}_{i}\right)\right)
$$

- Approximate large sample likelihood is a weighted least-square

$$
p(y \mid \beta)=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{\sum_{i=1}^{n} \sqrt{k_{i} \hat{p}_{i}\left(1-\hat{p}_{i}\right)}\left(\hat{p}_{i}-x^{i}\right)^{2}}{2}} .
$$

- Back to Gaussian (weighted) linear regression.

Probit model

- n independent observations $y_{i} \sim \mathcal{B}\left(k_{i}, h\left(X^{i} \beta\right)\right.$.
- Logit : $h=\Phi$, standard normal cdf.
- The posterior of β

$$
p(\beta \mid y) \propto \prod_{i=1}^{n} \Phi\left(X^{i} \beta\right)^{y_{i}}\left(1-\Phi\left(X^{i} \beta\right)\right)^{k_{i}-y_{i}} \pi(\beta)
$$

- The likelihood and posterior even less tractable that for the logistic.
- One can also use the Delta theorem to get a normal approximation, though less precise that for the logistic.
- Otherwise MC sampling through latent variables.

Bayesian computations

- Bayesian inference requires computation of moments (e.g. mean, variance), modes and quantiles (e.g. medians) of the posterior distribution.
- MAP:
- Involves an solving an optimization problem.
- Closed-form : for some (interesting cases).
- MMSE:
- Involves an integration problem.
- Closed-form : rather an exception than a rule.
- Analytical approximations (Laplace, saddlepoint, etc) : requires smoothness.
- Numerical quadrature : unrealistic in high-dimensional settings.
- Monte-Carlo methods.

MAP

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)-\log \pi(\beta)
$$

- A structured composite optimization problem.
- A whole area in its own:
- The key is to exploit the properties of each term individually and separately.
- A rich literature including proximal splitting for large-scale data.
- Previous MCs on the subject.

MAP

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}}-\log p\left(y \mid \beta, \theta_{e}\right)-\log \pi(\beta)
$$

- A structured composite optimization problem.
- A whole area in its own:
- The key is to exploit the properties of each term individually and separately.
- A rich literature including proximal splitting for large-scale data.
- Previous MCs on the subject.

Example (Linear regression with GGD prior)

- Hyperparameters (σ, p, λ) known, the MAP reads :

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2 \sigma^{2}}\|y-X \beta\|^{2}+\lambda\|\beta\|_{p}^{p}, \quad p \geq 0
$$

- Forward-Backward splitting :

$$
\left.\left.\beta_{k+1} \in \operatorname{prox}_{\lambda \sigma^{2} \gamma\|\cdot\|_{p}^{p}}\left(\beta_{k}+\gamma X^{\top}\left(y-X \beta_{k}\right)\right), \gamma \in\right] 0,1 /\|X\|^{2}\right] .
$$

- Convergence guarantees:
- $p \geq 1$: to a global minimizer (γ even to $<2 /\|X\|^{2}$.
- $p \in[0,1[$: in general to a critical point (o-minimal geometry arguments), and a global minimizer if started sufficiently close to it.

Laplace approximation

- Goal is to compute

$$
\mathbb{E}[g(\beta) \mid y]=\frac{\int_{\mathbb{R}^{p}} g(\beta) p(y \mid \beta) \pi(\beta) d \beta}{\int_{\mathbb{R}^{p}} p(y \mid \beta) \pi(\beta) d \beta}
$$

where g, p and π are smooth enough functions of β.

- Approximately evaluate the following integral for large n

$$
I \stackrel{\text { def }}{=} \int_{\mathbb{R}^{p}} q(\beta) \exp (-n h(\beta)) d \beta
$$

h and q are smooth enough around $\widehat{\beta}$, the unique minimizer of h at $\widehat{\beta}$.

Laplace approximation

- Goal is to compute

$$
\mathbb{E}[g(\beta) \mid y]=\frac{\int_{\mathbb{R}^{p}} g(\beta) p(y \mid \beta) \pi(\beta) d \beta}{\int_{\mathbb{R}^{p}} p(y \mid \beta) \pi(\beta) d \beta}
$$

where g, p and π are smooth enough functions of β.

- Approximately evaluate the following integral for large n

$$
I \stackrel{\text { def }}{=} \int_{\mathbb{R}^{p}} q(\beta) \exp (-n h(\beta)) d \beta
$$

h and q are smooth enough around $\widehat{\beta}$, the unique minimizer of h at $\widehat{\beta}$.

- The Laplace method involves a Taylor expansion of q and h around $\widehat{\beta}$:

$$
\begin{aligned}
I & =\exp (-n h(\widehat{\beta})) \int_{\mathbb{R}^{p}}\left(q(\widehat{\beta})+(\beta-\widehat{\beta}) \nabla q(\widehat{\beta})+\frac{1}{2}(\beta-\widehat{\beta})^{\top} \nabla^{2} q(\widehat{\beta})(\beta-\widehat{\beta})+\cdots\right) e^{-\frac{n(\beta-\widehat{\beta})^{\top} \nabla^{2} h(\widehat{\beta})(\beta-\widehat{\beta})}{2}} d \beta \\
& =\exp (-n h(\widehat{\beta}))\left((2 \pi)^{p / 2} n^{-p / 2} \operatorname{det}\left(\nabla^{2} h(\widehat{\beta})\right)^{-1 / 2}\right)\left(q(\widehat{\beta})+O\left(n^{-1}\right)\right)
\end{aligned}
$$

- Apply to the numerator (resp. denominator) of $\mathbb{E}[g(\beta) \mid y]$, with $q=g$ (resp. $q=1)$ and $h(\beta)=-\log (p(y \mid \beta))-\log (\pi(\beta)):$

$$
\mathbb{E}[g(\beta) \mid y]=g(\widehat{\beta})\left(1+O\left(n^{-1}\right)\right)
$$

- MMSE necessitates to solve the MAP supposed to be unique.

Tierney-Kanade approximation

- Goal is to compute

$$
\mathbb{E}[g(\beta) \mid y]=\frac{\int_{\mathbb{R}^{p}} g(\beta) p(y \mid \beta) \pi(\beta) d \beta}{\int_{\mathbb{R}^{p}} p(y \mid \beta) \pi(\beta) d \beta}
$$

where g, p and π are smooth enough functions of β, g positive.

$$
\begin{aligned}
& I \stackrel{\text { def }}{=} \int_{\mathbb{R}^{p}} q(\beta) \exp (-n h(\beta)) d \beta \\
& \quad=\exp (-n h(\widehat{\beta}))\left((2 \pi)^{p / 2} n^{-p / 2} \operatorname{det}\left(\nabla^{2} h(\widehat{\beta})\right)^{-1 / 2}\right)\left(q(\widehat{\beta})+O\left(n^{-1}\right)\right)
\end{aligned}
$$

- Suppose $\widehat{\beta}$ is the unique minimizer of $n h(\beta)=-\log (p(y \mid \beta))-\log (\pi(\beta))$, and $\widehat{\beta^{*}}$ is the unique minimizer of $n h^{*}=-\log (p(y \mid \beta))-\log (\pi(\beta))-\log (g(\beta))$.
- Apply to the numerator (resp. denominator) of $\mathbb{E}[g(\beta) \mid y]$, with $h^{*}($ resp. h) and $q=1$:

$$
\mathbb{E}[g(\beta) \mid y]=\sqrt{\frac{\operatorname{det}\left(\nabla^{2} h(\widehat{\beta})\right)}{\operatorname{det}\left(\nabla^{2} h^{*}\left(\widehat{\beta^{*}}\right)\right)}} \exp \left(n\left(h(\widehat{\beta})-h^{*}\left(\widehat{\beta^{*}}\right)\right)\right)\left(1+O\left(n^{-2}\right)\right) .
$$

- 2nd-order approximation, but necessitates to solve 2 non-degenerate optimization.
- Availability of all-purpose MC simulation approaches have rendered these methods less used.

Monte-Carlo sampling

- Consider the expectation wrt to measure μ on \mathcal{Y} :

$$
\mathbb{E}[g(Y)]=\int_{\mathcal{Y}} g(y) \mu(d y)
$$

- Statistical sampling is a natural way to evaluate this integral :
- Generate m iid observations $y_{1}, y_{2}, \cdots, y_{m}$ from μ and compute

$$
\bar{g}_{m}=\frac{1}{m} \sum_{i=1}^{m} g\left(y_{i}\right)
$$

- By the LLN, \bar{g}_{m} converges in probability (or even a.s.) to $\mathbb{E}[g(Y)]$.
- This justifies \bar{g}_{m} as an approximation for $\mathbb{E}[g(Y)]$ for large m.
- This suggests to use MC sampling to approximate the MMSE $\mathbb{E}[\beta \mid y]$.
- One has to sample from the posterior distribution.
- Bayesian posterior distributions are generally non-standard which may not easily allow sampling from them.

Monte-Carlo sampling

- Consider the MMSE :

$$
\mathbb{E}[\beta \mid y]=\frac{\int_{\mathbb{R}} \theta \phi\left(y ; \beta, \sigma^{2}\right) \pi(\beta) d \beta}{\int_{\mathbb{R}} \phi\left(y ; \beta, \sigma^{2}\right) \pi(\beta) d \beta},
$$

π is heavy-tailed and easy to sample from.

- Two alternatives :

1. Ratio of expectations of $\theta \pi(\beta)$ and $\pi(\beta)$ wrt to $\mathcal{N}\left(y, \sigma^{2}\right)$.

- Sample from $\mathcal{N}\left(y, \sigma^{2}\right)$ and approximate these expectations to get an approximation of $\mathbb{E}[\beta \mid y]$.
- Unwise as π is heavy-tailed while the Gaussian concentrates around its mean, hence missing the contribution from the tails.

2. Ratio of expectations of $\theta \phi\left(y ; \beta, \sigma^{2}\right)$ and $\phi\left(y ; \beta, \sigma^{2}\right)$ wrt to π.

- Sample from π and approximate these expectations to get an approximation of $\mathbb{E}[\beta \mid y]$.
- Not satisfactory either as $p(\beta \mid y)$ is not as heavy-tailed as π.
- Both alternatives would lead to slow convergence of the sample mean.
- Rather sample directly from $p(\beta \mid y)$ itself.

Importance sampling

- Consider the expectation wrt to measure μ on \mathcal{Y} :

$$
\mathbb{E}_{\mu}[g(Y)]=\int_{\mathcal{Y}} g(y) \mu(d y)
$$

- Suppose that it is difficult/expensive to sample from μ, but there exists a probability measure ν very close to μ from which it is easy to sample.
- Then

$$
\mathbb{E}_{\mu}[g(Y)]=\mathbb{E}_{\nu}[g(Y) w(Y)], \quad w=\mu / \nu
$$

where $w=\mu / \nu$ (beware of support issues).

- Sample from ν and compute sample mean of $g w$.
- ν is the importance sampling measure.

Importance sampling

- Consider the expectation wrt to measure μ on \mathcal{Y} :

$$
\mathbb{E}_{\mu}[g(Y)]=\int_{\mathcal{Y}} g(y) \mu(d y)
$$

- Suppose that it is difficult/expensive to sample from μ, but there exists a probability measure ν very close to μ from which it is easy to sample.
- Then

$$
\mathbb{E}_{\mu}[g(Y)]=\mathbb{E}_{\nu}[g(Y) w(Y)], \quad w=\mu / \nu
$$

where $w=\mu / \nu$ (beware of support issues).

- Sample from ν and compute sample mean of $g w$.
- ν is the importance sampling measure.

Example y_{i} are n i.i.d. $\mathcal{N}\left(\theta, \sigma^{2}\right)$, where θ and σ^{2} are independent, θ has a double exponential distribution with density $e^{-|\theta|} / 2$, and σ^{2} has the prior density of $\left(1+\sigma^{2}\right)^{-2}$. One can show that

$$
p\left(\theta, \sigma^{2} \mid y\right) \propto f_{1}\left(\sigma^{2} \mid \theta\right) f_{2}(\theta) e^{-|\theta|}\left(\frac{\sigma^{2}}{1+\sigma^{2}}\right)^{2},
$$

where f_{1} is the density of inverse Gamma with parameters $\left(n / 2+1, \operatorname{tfracn} 2\left((\theta-\bar{y})^{2}+s^{2}\right), f_{2}\right.$ is the $n+1 t$-density, with location \bar{y} (sample mean) and scale $\propto s$ (sample std).
The tails are mostly captured in $f_{1}\left(\sigma^{2} \mid \theta\right) f_{2}(\theta)$, which can serve as an importance sampling density.

MCMC: Iterative MC sampling

- MC methods necessitate complete determination of the sampling measure.
- Situations where posterior distributions are incompletely specified or are specified indirectly cannot be handled, e.g., only in terms of several conditional and marginal distributions.
- It turns out that it is indeed possible in such cases to adopt an iterative MC sampling scheme.
- These iterative MC procedures typically generate a random sequence with the Markov property such that this Markov chain is ergodic with the limiting distribution being the target posterior distribution.
- A whole class of such iterative procedures are dubbed Markov chain Monte Carlo (MCMC) procedures.

A glimpse of Markov chains

Definition A sequence of random variables $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain if for any n, given X_{n}, the past $\left\{X_{j}: j \leq n-1\right\}$ and the future $\left\{X_{j}: j \geq n+1\right\}$ are independent, i.e. for any two events A and B defined respectively in terms of the past and the future,

$$
P\left(A \cap B \mid X_{n}\right)=P\left(A \mid X_{n}\right) P\left(B \mid X_{n}\right)
$$

Definition A Markov chain has a time homogeneous or stationary transition probability iff the probability distribution of $X_{n+1} \mid X_{n}=x$, and the past, $\left\{X_{j}: j \leq n-1\right\}$ depends only on x. This is specified in terms of the transition kernel P, where $P(x, A)=$ $\operatorname{Pr}\left(X_{n+1} \in A \mid X_{n}=x\right)$. If the state-space (set of values X_{n} can take), is countable, this reduces to specifying the transition probability matrix $P, P_{i j}=\operatorname{Pr}\left(X_{n+1}=\right.$ $j \mid X_{n}=i$.

Lemma Suppose that $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain on a countable state-space with stationary transition probabilities. Then the joint probability distribution of $\left\{X_{n}\right\}_{n \geq 0}$ is

$$
\operatorname{Pr}\left(X_{i}=j_{i}: i=0, \cdots, n\right)=\operatorname{Pr}\left(X_{0}=j_{0}\right) \prod_{i=1}^{n} P_{j_{i-1} j_{i}}
$$

A glimpse of Markov chains

Definition A probability distribution μ is called stationary or invariant for a transition probability P or the associated Markov chain $\left\{X_{n}\right\}$ iff : when the probability distribution of X_{0} is μ then the same is true for X_{n} for all $n \geq 1$.

Lemma Suppose that $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain on a state-space S with kernel P. Then a probability distribution μ with density p is a stationary for P if

$$
\int_{A} p(x) d x=\int_{S} P(x, A) p(x) d x, \forall A \subset S
$$

In the countable case : μ is a left eigenvector of P.

Definition A Markov chain $\left\{X_{n}\right\}_{n \geq 0}$ with a countable state space S and transition probability matrix P is said to be irreducible if for any two states i and j the probability of the Markov chain visiting j starting from i is positive. A similar notion of irreducibility can be stated for general state spaces.

LLN for Markov chains

Theorem Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state-space S and kernel P. Further, suppose it is (Harris) irreducible and has a stationary distribution μ. Then, for any bounded function $g: S \rightarrow \mathbb{R}$ and for any initial distribution of X_{0}

$$
\frac{1}{n} \sum_{i=0}^{n-1} g\left(X_{i}\right) \underset{\mathcal{P}}{\rightarrow} \int_{S} g(x) \mu(d x)
$$

LLN for Markov chains

Theorem Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state-space S and kernel P. Further, suppose it is (Harris) irreducible and has a stationary distribution μ. Then, for any bounded function $g: S \rightarrow \mathbb{R}$ and for any initial distribution of X_{0}

$$
\frac{1}{n} \sum_{i=0}^{n-1} g\left(X_{i}\right) \underset{\mathcal{P}}{\rightarrow} \int_{S} g(x) \mu(d x)
$$

Remark Under additional conditions (e.g. aperiodicity for countable state-space), one can also assert that the distribution of X_{n} converges (in an appropriate topology) to μ.

LLN for Markov chains

Theorem Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state-space S and kernel P. Further, suppose it is (Harris) irreducible and has a stationary distribution μ. Then, for any bounded function $g: S \rightarrow \mathbb{R}$ and for any initial distribution of X_{0}

$$
\frac{1}{n} \sum_{i=0}^{n-1} g\left(X_{i}\right) \underset{\mathcal{P}}{\rightarrow} \int_{S} g(x) \mu(d x)
$$

Remark Under additional conditions (e.g. aperiodicity for countable state-space), one can also assert that the distribution of X_{n} converges (in an appropriate topology) to μ.

This result is the backbone of Monte-Carlo Markov Chain (MCMC) methods.

Metropolis-Hastings algorithm

- A very general-purpose MCMC method.
- Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.

Metropolis-Hastings algorithm

- A very general-purpose MCMC method.
- Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.
Inputs : State-space S, μ a probability measure with density p on $S . X_{0}$.
Proposal transition kernel Q with density $q: \forall x \in S$, easy to sample from $q(x, \cdot)$.
Compute: Acceptance probability $\rho: \rho(x, y)=\min \left(1, \frac{p(y) q(y, x)}{p(x) q(x, y)}\right), \forall(x, y)$ s.t. $p(x) q(x, y)>0$.
repeat
if $X_{n}=x$ then
draw a sample Y_{n} from $q(x, \cdot)$;
Set

$$
X_{n+1}= \begin{cases}Y_{n} & \text { with prob. } \rho\left(X_{n}, Y_{n}\right) \\ X_{n} & \text { with prob. } 1-\rho\left(X_{n}, Y_{n}\right)\end{cases}
$$

until convergence;

Metropolis-Hastings algorithm

- A very general-purpose MCMC method.
- Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.
Inputs : State-space S, μ a probability measure with density p on $S . X_{0}$.
Proposal transition kernel Q with density $q: \forall x \in S$, easy to sample from $q(x, \cdot)$.
Compute: Acceptance probability $\rho: \rho(x, y)=\min \left(1, \frac{p(y) q(y, x)}{p(x) q(x, y)}\right), \forall(x, y)$ s.t. $p(x) q(x, y)>0$.
repeat
if $X_{n}=x$ then
draw a sample Y_{n} from $q(x, \cdot)$;
Set

$$
X_{n+1}= \begin{cases}Y_{n} & \text { with prob. } \rho\left(X_{n}, Y_{n}\right) \\ X_{n} & \text { with prob. } 1-\rho\left(X_{n}, Y_{n}\right) .\end{cases}
$$

until convergence;
Proposition (i) $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain on S.
(ii) μ is a stationary/invariant probability distribution for $\left\{X_{n}\right\}_{n \geq 0}$.
(iii) If Q is irreducible on S, then so is $\left\{X_{n}\right\}_{n \geq 0}$ and the LLN on Markov chains applies.

Metropolis-Hastings algorithm

- A very general-purpose MCMC method.
- Idea : not sample from the target density, but simulate a Markov chain whose stationary/invariant distribution is the target density.
Inputs : State-space S, μ a probability measure with density p on $S . X_{0}$.
Proposal transition kernel Q with density $q: \forall x \in S$, easy to sample from $q(x, \cdot)$.
Compute: Acceptance probability $\rho: \rho(x, y)=\min \left(1, \frac{p(y) q(y, x)}{p(x) q(x, y)}\right), \forall(x, y) \quad$ s.t. $\quad p(x) q(x, y)>0$.
repeat
if $X_{n}=x$ then
$\left\lfloor\right.$ draw a sample Y_{n} from $q(x, \cdot)$;
Set

$$
X_{n+1}= \begin{cases}Y_{n} & \text { with prob. } \rho\left(X_{n}, Y_{n}\right) \\ X_{n} & \text { with prob. } 1-\rho\left(X_{n}, Y_{n}\right)\end{cases}
$$

until convergence;

- A distinctive feature of MH for Bayesian inference is that it is enough to know p up to a multiplicative constant : acceptance probability depends on ratios.
- Conclusion : the normalization constant in the posterior density is of no importance at all in the MH algorithm.

Gibbs sampling

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

Gibbs sampling

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

```
Inputs : State-space \(S \subset \mathbb{R}^{p}, \mu\) a probability measure on \(S\).
                Initial configuration \(X_{0}\).
for \(n=1 \cdots\) do
    Draw sample \(X_{n, 2}\) from the univariate distribution \(\mu\left(\cdot \mid x_{n-1,2}, \cdots, x_{n-1, p}\right)\);
    for \(i=2\) to \(p\) do
    L Draw sample \(X_{n, i}\) from the univariate distribution \(\mu\left(\cdot \mid X_{n, 1}, \cdots, X_{n, i-1}, x_{n-1, i+1}, \cdots, x_{n-1, p}\right)\).
```


Gibbs sampling

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

```
Inputs : State-space \(S \subset \mathbb{R}^{p}, \mu\) a probability measure on \(S\).
                Initial configuration \(X_{0}\).
for \(n=1 \cdots\) do
    Draw sample \(X_{n, 2}\) from the univariate distribution \(\mu\left(\cdot \mid x_{n-1,2}, \cdots, x_{n-1, p}\right)\);
    for \(i=2\) to \(p\) do
    L Draw sample \(X_{n, i}\) from the univariate distribution \(\mu\left(\cdot \mid X_{n, 1}, \cdots, X_{n, i-1}, x_{n-1, i+1}, \cdots, x_{n-1, p}\right)\).
```

Proposition (i) The Gibbs sampler is a special case of MH.
(ii) $\left\{X_{n}\right\}_{n \geq 0}$ is an irreducible Markov chain on S.
(iii) μ is a stationary/invariant probability distribution for $\left\{X_{n}\right\}_{n \geq 0}$.
(iv) The LLN on Markov chains applies.

Gibbs sampling

- The Gibbs sampler is especially suitable for generating an irreducible aperiodic Markov chain that has as its stationary distribution a target distribution in a high- dimensional space but having some special structure.
- The most interesting aspect of this approach is that it only draw samples from univariate distributions through the course of iterations.

```
Inputs : State-space \(S \subset \mathbb{R}^{p}, \mu\) a probability measure on \(S\).
                Initial configuration \(X_{0}\).
for \(n=1 \cdots\) do
    Draw sample \(X_{n, 2}\) from the univariate distribution \(\mu\left(\cdot \mid x_{n-1,2}, \cdots, x_{n-1, p}\right)\);
    for \(i=2\) to \(p\) do
    L Draw sample \(X_{n, i}\) from the univariate distribution \(\mu\left(\cdot \mid X_{n, 1}, \cdots, X_{n, i-1}, x_{n-1, i+1}, \cdots, x_{n-1, p}\right)\).
```


Proposition
 (i) The Gibbs sampler is a special case of MH .

(ii) $\left\{X_{n}\right\}_{n \geq 0}$ is an irreducible Markov chain on S.
(iii) μ is a stationary/invariant probability distribution for $\left\{X_{n}\right\}_{n \geq 0}$.
(iv) The LLN on Markov chains applies.

- Is popular for hierarchical Bayesian modeling.
- e.g. in Markov random fields with Ising model.
- - Improved estimators can be obtained via variance-reduction (Rao-Blackwell theorem).

Langevin diffusion

- A Langevin diffusion X in \mathbb{R}^{p}, is a homogeneous Markov process defined by the SDE

$$
d X(t)=\frac{1}{2} \rho(X(t)) d t+d W(t), t>0, X(0)=\boldsymbol{x}_{0}
$$

- $\rho=-\nabla \log \mu, \mu$ is everywhere non-zero and suitably smooth target density function on \mathbb{R}^{p};
- W is a p-dimensional Brownian process.

Langevin diffusion

- A Langevin diffusion X in \mathbb{R}^{p}, is a homogeneous Markov process defined by the SDE

$$
d X(t)=\frac{1}{2} \rho(X(t)) d t+d W(t), t>0, X(0)=\boldsymbol{x}_{0}
$$

- $\rho=-\nabla \log \mu, \mu$ is everywhere non-zero and suitably smooth target density function on \mathbb{R}^{p};
- W is a p-dimensional Brownian process.
- Under mild assumptions, the SDE has a unique strong solution and $X(t)$ has a stationary distribution with density precisely μ.
- Opens the door to approximating integrals $\int_{\mathbb{R}^{p}} g(\theta) \mu(\theta) d \theta$ by the average value of the Langevin diffusion path

$$
\frac{1}{T} \int_{0}^{T} g(X(t)) d t, \quad \text { for large enough } T
$$

Langevin diffusion

- Euler (forward) discretization

$$
\begin{aligned}
X_{n+1} & =X_{n}+\frac{\delta}{2} \rho\left(X_{n}\right)+\sqrt{\delta} Z_{n}, \quad X_{0}=x_{0}, \\
& =X_{n}-\frac{\delta}{2} \nabla \log \mu\left(X_{n}\right)+\sqrt{\delta} Z_{n}
\end{aligned}
$$

- $\delta>0$: the discretization step-size;
- $\left\{Z_{n}\right\}_{n \geq 0}$ i.i.d. $\sim \mathcal{N}\left(0, I_{p}\right)$.

Langevin diffusion

- Euler (forward) discretization

$$
\begin{aligned}
X_{n+1} & =X_{n}+\frac{\delta}{2} \rho\left(X_{n}\right)+\sqrt{\delta} Z_{n}, \quad X_{0}=x_{0}, \\
& =X_{n}-\frac{\delta}{2} \nabla \log \mu\left(X_{n}\right)+\sqrt{\delta} Z_{n}
\end{aligned}
$$

- $\delta>0$: the discretization step-size;
- $\left\{Z_{n}\right\}_{n \geq 0}$ i.i.d. $\sim \mathcal{N}\left(0, \mathrm{I}_{p}\right)$.
- $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain. $\quad X^{\delta}(t) \stackrel{\text { def }}{=} X_{0}+\frac{1}{2} \int_{0}^{t} \rho(\bar{X}(s)) d s+\int_{0}^{t} d W(s) d s$,
- The Girsanov formula implies :

$$
\bar{X}(t)=X_{n} \text { for } t \in[n \delta,(n+1) \delta[.
$$

$$
\operatorname{KL}\left(\mu(\{X(t): t \in[0, T]\}), \mu\left(\left\{X^{\delta}(t): t \in[0, T]\right\}\right)\right) \underset{h \rightarrow 0}{\longrightarrow} 0 .
$$

- The average value can then be naturally approximated via

$$
\frac{\delta}{T} \sum_{n=0}^{\lfloor T / \delta\rfloor} X_{n}
$$

Langevin diffusion

- Euler (forward) discretization

$$
\begin{gathered}
X_{n+1}=X_{n}+\frac{\delta}{2} \rho\left(X_{n}\right)+\sqrt{\delta} Z_{n}, \quad X_{0}=\boldsymbol{x}_{0} \\
=X_{n}-\frac{\delta}{2} \nabla \log \mu\left(X_{n}\right)+\sqrt{\delta} Z_{n} \\
X^{\delta}(t) \stackrel{\text { def }}{=} X_{0}+\frac{1}{2} \int_{0}^{t} \rho(\bar{X}(s)) d s+\int_{0}^{t} d W(s) d s, \quad \bar{X}(t)=X_{n} \text { for } t \in[n \delta,(n+1) \delta[.
\end{gathered}
$$

Theorem Assume that ρ is locally Lipchitz continuous and verifies an appropriate growth condition. Then,

$$
\left\|\mathbb{E}\left[X^{\delta}(T)\right]-\mathbb{E}[X(T)]\right\|_{2} \leq \mathbb{E}\left[\sup _{0 \leq t \leq T}\left\|X^{\delta}(t)-X(t)\right\|_{2}\right] \underset{\delta \rightarrow 0}{\longrightarrow} 0
$$

If ρ is uniformly Lipschitz continuous, the optimal consistency rate $\delta^{1 / 2}$ is achieved.

Take-away messages

- Bayesian modeling is a flexible paradigm.
- Bayesian inference involves optimization and integration.
- Bayesian interpretation is not universal: all PMLE are NOT MAP.
- Bayesian computation is essentially easier for MAP.
- For MMSE, MCMC methods are general and versatile, though scaling with dimension can be an issue.
- A variety of applications: signal and image processing, communication, biostatistics, classification, machine learning.

https://fadili.users.greyc.fr/

Thanks

Any questions?

