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The aim of Statistics

In Statistics, we generally care about inferring information about an
unknown parameter θ. For instance, we observe X1, . . . ,Xn ∼ N (θ, 1) and
wish to:

Obtain a (point) estimate θ̂ of θ, e.g. θ̂ = 1.3.

Measure the uncertainty of our estimator, by obtaining an interval or
region of plausible values, e.g. [0.9, 1.5] is a 95% confidence interval
for θ.

Perform model choice/hypothesis testing, e.g. decide between
H0 : θ = 0 and H1 : θ 6= 0 or between H0 : Xi ∼ N (θ, 1) and
H1 : Xi ∼ E(θ).

Use this inference in postprocessing: prediction, decision-making,
input of another model...
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Why be Bayesian?

Some application areas make heavy use of Bayesian inference, because:

The models are complex

Estimating uncertainty is paramount

The output of one model is used as the input of another

We are interested in complex functions of our parameters
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Frequentist statistics

Statistical inference deals with estimating an unknown parameter θ
given some data D.

In the frequentist view of statistics, θ has a true fixed (deterministic)
value.

Uncertainty is measured by confidence intervals, which are not
intuitive to interpret: if I get a 95% CI of [80 ; 120] (i.e. 100± 20)
for θ, I cannot say that there is a 95% probability that θ belongs to
the interval [80 ; 120].

Frequentist statistics often use the maximum likelihood estimator: for
which value of θ would the data be most likely (under our model)?

L(θ|D) = P[D|θ]

θ̂ = arg max
θ

L(θ|D)
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Bayes’ rule

Recall Bayes’ rule: for two events A and B, we have

P[A|B] =
P[B|A]P[A]

P[B]
.

Alternatively, with marginal and conditional densities:

π(y |x) =
π(x |y)π(y)

π(x)
.
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Bayesian statistics

In the Bayesian framework, the parameter θ is seen as inherently
random: it has a distribution.

Before I see any data, I have a prior distribution on π(θ), usually
uninformative.

Once I take the data into account, I get a posterior distribution,
which is hopefully more informative.
By Bayes’ rule,

π(θ|D) =
π(D|θ)π(θ)

π(D)
.

By definition, π(D|θ) = L(θ|D). The quantity π(D) is a normalizing
constant with respect to θ, so we usually do not include it and write
instead

π(θ|D) ∝ π(θ)L(θ|D).
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Bayesian statistics

π(θ|D) ∝ π(θ)L(θ|D)

Different people have different priors, hence different posteriors. But
with enough data, the choice of prior matters little.

We are now allowed to make probability statements about θ, such as
”there is a 95% probability that θ belongs to the interval [78 ; 119]”
(credible interval).
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Advantages and drawbacks of Bayesian statistics

More intuitive interpretation of the results

Easier to think about uncertainty

In a hierarchical setting, it becomes easier to take into account all the
sources of variability

Prior specification: need to check that changing your prior does not
change your result

Computationally intensive
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Example: Bernoulli

Take Xi ∼ Bernoulli(θ), i.e.

P[Xi = 1] = θ P[Xi = 0] = 1− θ.

Possible prior: θ ∼ U([0, 1]): π(θ) = 1 for 0 ≤ θ ≤ 1.
Likelihood:

L(θ|Xi ) = θXi (1− θ)1−Xi

L(θ|X1, . . . ,Xn) = θ
∑

Xi (1− θ)n−
∑

Xi = θSn(1− θ)n−Sn

Posterior, with Sn =
∑n

i=1 Xi :

π(θ|X1, . . . ,Xn) ∝ 1 · θSn(1− θ)n−Sn

We can compute the normalizing constant analytically:

π(θ|X1, . . . ,Xn) =
(n + 1)!

Sn!(n − Sn)!
θSn(1− θ)n−Sn
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Conjugate prior

Suppose we take the prior θ ∼ Beta(α, β):

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1.

Then the posterior verifies

π(θ|X1, . . . ,Xn) ∝ θα−1(1− θ)β−1 · θSn(1− θ)n−Sn

hence
θ|X1, . . . ,Xn ∼ Beta(α + Sn, β + n − Sn).

Whatever the data, the posterior is in the same family as the prior: we say
that the prior is conjugate for this model. This is very convenient
mathematically.
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Jeffrey’s prior

Another possible default prior is Jeffrey’s prior, which is invariant by
change of variables.
Let ` be the log-likelihood and I be Fisher’s information:

I(θ) = E

[(
d`

dθ

)2
∣∣∣∣∣X ∼ Pθ

]
= −E

[
d2

dθ2
`(θ;X )

∣∣∣∣X ∼ Pθ] .
Jeffrey’s prior is defined by

π(θ) ∝
√
I(θ).
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Invariance of Jeffrey’s prior

Let φ be an alternate parameterization of the model. Then the prior
induced on φ by Jeffrey’s prior on θ is

π(φ) = π(θ)

∣∣∣∣ dθdφ
∣∣∣∣

∝

√
I(θ)

(
dθ

dφ

)2

=

√√√√E

[(
d`

dθ

)2
](

dθ

dφ

)2

=

√√√√E

[(
d`

dθ

dθ

dφ

)2
]

=

√√√√E

[(
d`

dφ

)2
]

=
√
I(φ)

which is Jeffrey’s prior on φ.
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Effect of prior

Example: Bernoulli model (biased coin). θ=probability of success.
Observe Sn = 72 successes out of n = 100 trials.
Frequentist estimate: θ̂ = 0.72
95% confidence interval: [0.63 0.81].
Bayesian estimate: will depend on the prior.
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Effect of prior
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Effect of prior
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Effect of prior
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Choosing the prior

The choice of the prior distribution can have a large impact, especially if
the data are of small to moderate size. How do we choose the prior?

Expert knowledge of the application

A previous experiment

A conjugate prior, i.e. one that is convenient mathematically, with
moments chosen by expert knowledge

A non-informative prior

...

In all cases, the best practice is to try several priors, and to see whether
the posteriors agree: would the data be enough to make agree experts who
disagreed a priori?
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Example: phylogenetic tree

Example from Ryder & Nicholls (2011).
Given lexical data, we wish to infer the age of the Most Recent Common
Ancestor to the Indo-European languages.
Two main hypotheses:

Kurgan hypothesis: root age is 6000-6500 years Before Present (BP).

Anatolian hypothesis: root age is 8000-9500 years BP
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Example of a tree
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Why be Bayesian in this setting?

Our model is complex and the likelihood function is not pleasant

We are interested in the marginal distribution of the root age

Many nuisance parameters: tree topology, internal ages, evolution
rates...

We want to make sure that our inference procedure does not favour
one of the two hypotheses a priori

We will use the output as input of other models

For the root age, we choose a prior U([5000, 16000]). Prior for the other
parameters is out of the scope of this talk.
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Model parameters

Parameter space is large:

Root age R

Tree topology and internal ages g (complex state space)

Evolution parameters λ, µ, ρ, κ

...

The posterior distribution is defined by

π(R, g , λ, µ, ρ, κ|D) ∝ π(R)π(g)π(λ, µ, κ, ρ)L(R, g , λ, µ, κ, ρ|D)

We are interested in the marginal distribution of R given the data D:

π(R|D) =

∫
π(R, g , λ, µ, ρ, κ|D) dg dλ dµ dρ dκ.
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Computation

This distribution is not available analytically, nor can we sample from it
directly.
But we can build a Markov Chain Monte Carlo scheme (see Jalal’s talk) to
get a sample from the joint posterior distribution of (R, g , λ, µ, ρ, κ) given
D.
Then keeping only the R component gives us a sample from the marginal
posterior distribution of R given D.
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Root age: prior
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Root age: posterior
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Phylogenetics tree of languages: conclusions

Strong support for Anatolian hypothesis; no support for Kurgan
hypothesis

Measuring the uncertainty of the root age estimate is key

We integrate out the uncertainty of the nuisance parameters

This setting is much easier to handle in the Bayesian setting than in
the frequentist setting

Computational aspects are complex
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Air France Flight 447

This section and its figures are after Stone et al. (Statistical Science 2014)
Air France Flight 447 disappeared over the Atlantic on 1 June 2009, en
route from Rio de Janeiro to Paris; all 228 people on board were killed.
The first three search parties did not succeed at retrieving the wreckage or
flight recorders.
In 2011, a fourth party was launched, based on a Bayesian search.

Figure : Flight route. Picture by Mysid, Public Domain.
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Why be Bayesian?

Many sources of uncertainties

Subjective probabilities

The object of interest is a distribution

Frequentist formalism does not apply (unique event)
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Previous searches
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Prior based on flight dynamics

Robin Ryder (Dauphine) Bayesian inference: what and why 06/11/17 29 / 42



Probabilities derived from drift
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Posterior
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Conclusions

Once the posterior distribution was derived, the search was organized
starting with the areas of highest posterior probability

Actually several posteriors, because several models were considered

The wreckage was located in one week
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Point estimates

Although one of the main purposes of Bayesian inference is getting a
distribution, we can also need to summarize the posterior with a point
estimate.
Common choices:

Posterior mean

θ̂ =

∫
θ · π(θ|D) dθ

Maximum a posteriori (MAP)

θ̂ = arg maxπ(θ|D)

Posterior median

...
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Optimality

From a frequentist point of view, the posterior expectation is optimal
under a certain sense.
Let θ be the true value of the parameter of interest, and θ̂(X ) an
estimator. Then the posterior mean minimizes the expectation of the
squared error under the prior

Eπ

[
‖θ − θ̂(X )‖2

2

]
For this reason, the posterior mean is also called the minimum mean
square error (MMSE) estimator.
For other loss functions, other point estimates are optimal.
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2D Ising models

(a) Original Image (b) Focused Region of Image
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2D Ising model

Higdon (JASA 1998)

Target density

Consider a 2D Ising model, with posterior density

π(x |y) ∝ exp

α∑
i

1I[yi = xi ] + β
∑
i∼j

1I[xi = xj ]


with α = 1, β = 0.7.

The first term (likelihood) encourages states x which are similar to
the original image y .

The second term (prior) favors states x for which neighbouring pixels
are equal, like a Potts model.
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2D Ising models: posterior exploration
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Figure : Spatial model example: states explored over 500,000 iterations for
Metropolis-Hastings (top) and Wang-Landau algorithms (bottom). Figure from

Bornn et al. (JCGS 2013). See also Jacob & Ryder (AAP 2014) for more on the

algorithm.

Robin Ryder (Dauphine) Bayesian inference: what and why 06/11/17 37 / 42



2D Ising models: posterior mean

Figure : Spatial model example: average state explored with Wang-Landau after
importance sampling. Figure from Bornn et al. (JCGS 2013). See also Jacob & Ryder

(AAP 2014) for more on the algorithm.
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Ising model: conclusions

Problem-specific prior

Even with a point estimate (posterior mean), we measure uncertainty

Computational cost is very high
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Several models

Suppose we have several models m1,m2, . . . ,mk . Then the model index
can be viewed as a parameter.
Take a uniform (or other) prior:

P[M = mj ] =
1

k
.

The posterior distribution then gives us the probability associated with
each model given the data.
We can use this for model choice (but there are other, more sophisticated,
techniques) but also for estimation/prediction while integrating out the
uncertainty on the model.
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Example: variable selection for linear regression

A model is a choice of covariables to include in the regression. With p
covariables, there are 2p models.
Classical (frequentist) setting:

Select variables, using your favourite penalty, thus selecting one model

Perform estimation and prediction within that model

If you want error bars, you can compute them, but only within that
model

Bayesian setting:

Explore space of all models

Get posterior probabilities

Compute estimation and prediction for each model (or, in practice, for
those with non negligible probability)

Weight these estimates/predictions by the posterior probability of
each model

The uncertainty about the model is thus fully taken into account.
Robin Ryder (Dauphine) Bayesian inference: what and why 06/11/17 41 / 42



Conclusions

Bayesian inference is a powerful tool to fully take into account all
sources of uncertainty

Difficulty of prior specification

Computational issues are the main hurdle
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