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Introduction

minimize
x∈RN

E(ϕj(h
⊤
j x, yj)) + g(Dx)

STOCHASTIC PROBLEM

where j ∈ N
∗, hj ∈ R

N , yj ∈ R, ϕj : R× R →]−∞,+∞] is a loss
function, and g ◦D is a regularization function, with
g : RP →]−∞,+∞] and D ∈ R

P×N .
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Introduction

minimize
x∈RN

E(ϕj(h
⊤
j x, yj)) + g(Dx)

STOCHASTIC PROBLEM

where j ∈ N
∗, hj ∈ R

N , yj ∈ R, ϕj : R× R →]−∞,+∞] is a loss
function, and g ◦D is a regularization function, with
g : RP →]−∞,+∞] and D ∈ R

P×N .

minimize
x∈RN

1

M

M∑

i=1

ϕi(h
⊤
i x, yi) + g(Dx)

BATCH PROBLEM

where, for all i ∈ {1, . . . ,M}, ϕi : R× R →]−∞,+∞], hi ∈ R
N and

yi ∈ R.
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Link between stochastic and batch problems

STOCHASTIC PROBLEM

BATCH PROBLEM

j ∈ N
∗ is deterministic,

(∀i ∈ {2, . . . ,M}) ϕi = ϕ1,

and (hj)j>1, (yj)j>1 are

i.i.d random variables.
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Link between stochastic and batch problems

STOCHASTIC PROBLEM

BATCH PROBLEM

y and H are deterministic,

and j is uniformly distributed

over {1, . . . ,M}.
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Introduction

NUMEROUS EXAMPLES:
◮ supervised classification
◮ inverse problems
◮ system identification, channel equalization
◮ linear prediction/interpolation
◮ echo cancellation, interference removal
◮ ...

In the context of large scale problems, how to find an
optimization algorithm able to deliver a reliable numerical solution

in a reasonable time, with low memory requirement?
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Outline

∗ FUNDAMENTAL TOOLS IN CONVEX ANALYSIS

∗ OPTIMIZATION ALGORITHMS FOR SOLVING

STOCHASTIC PROBLEM

◮ Stochastic forward-backward algorithm
◮ A brief focus on sparse adaptive filtering

∗ STOCHASTIC ALGORITHMS FOR SOLVING

BATCH PROBLEM

◮ Incremental gradient algorithms
◮ Block coordinate approaches



Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion

HUAWEI 6/30

Fundamental tools in convex
analysis
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Notation and definitions

Let f : RN → ]−∞,+∞].

◮ The domain of function f is

dom f =
{
x ∈ R

N | f(x) < +∞
}

If dom f 6= ∅, function f is said to be proper .

◮ Function f is convex if

(∀(x,y) ∈ (RN )2)(∀λ ∈ [0, 1])

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y).

◮ Function f is lower semi-continuous (lsc) on R
N if, for all

x ∈ R
N , for all sequence (xk)k∈N of RN ,

xk −→ x ⇒ lim inf f(xk) > f(x).
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Notation and definitions

Let f : RN →]−∞,+∞]. Function f is said ν-strongly convex if

(∀(x,y) ∈ (RN )2)(∀λ ∈ [0, 1])

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)−
1

2
νλ(1− λ)‖x− y‖2,

with ν ∈]0,+∞[.
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Notation and definitions

Let f : RN →]−∞,+∞]. Function f is said ν-strongly convex if

(∀(x,y) ∈ (RN )2)(∀λ ∈ [0, 1])

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)−
1

2
νλ(1− λ)‖x− y‖2,

with ν ∈]0,+∞[.

Let f : RN →]−∞,+∞[. Function f is said β-Lipschitz differentiable
if it is differentiable over RN and its gradient fulfills

(∀(x,y) ∈ (RN )2) ‖∇f(x)−∇f(y)‖ 6 β‖x− y‖,

with β ∈]0,+∞[.
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Subdifferential

The subdifferential of a convex function f : RN → ]−∞,+∞] at x is
the set

∂f(x) =
{
t ∈ R

N | (∀y ∈ R
N ) f(y) > f(x) + 〈t | y − x〉

}

An element t of ∂f(x) is called a subgradient of f at x.

f(y)

f(x) + 〈y − x|t〉

yx

x

t ∈ ∂f(x)

◮ If f is differentiable at x ∈ R
N then ∂f(x) = {∇f(x)}.
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Proximity operator

Let f : RN 7→]−∞,+∞] a proper, convex, l.s.c function.

(∀x ∈ R
N ) ŷ = proxf (x) ⇔ x− ŷ ∈ ∂f(ŷ).

CHARACTERIZATION OF PROXIMITY OPERATOR

The proximity operator proxf (x) of f at x ∈ R
N is the unique vector

ŷ ∈ R
N such that

f(ŷ) +
1

2
‖ŷ − x‖2 = inf

y∈RN
f(y) +

1

2
‖y − x‖.
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Properties of proximal operator

f(x) proxf (x)

translation
f(x− z) z + proxf (x− z)

z ∈ R
N

quadratic perturbation
f(x) + α‖x‖2/2 + 〈x | z〉+ γ prox f

α+1

(
x−z

α+1

)

z ∈ R
N , α > 0, γ ∈ R

scaling ρ ∈ R
∗ f (ρx) 1

ρ
proxρ2f (ρx)

quadratic function
γ‖Lx− z‖2/2 (Id + γLL

∗)−1(x− γL∗
z)

L ∈ R
M×N , γ > 0, z ∈ R

M

semi-unitary transform
f(Lx) x− µ−1

L
∗
(
x− proxµf (Lx)

)
L ∈ R

M×N , LL
∗ = µId , µ > 0

reflexion f(−x) −proxf (−x)

separability
N∑

i=1

ϕi(x
(i))

(
proxϕi

(x(i))
)

16i6N

x = (x(i))16i6N

indicator function ιC(x) PC(x)

support function ι∗C(x) = σC(x) x− PC(x)

See more on http://proximity-operator.net/
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Optimization algorithms for solving
stochastic problem
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Stochastic forward-backward algorithm

minimize
x∈RN

E(ϕj(h
⊤
j x, yj)) + g(Dx)

STOCHASTIC PROBLEM

⇒ At each iteration j > 1, assume that an estimate uj of the gradient
of Φ(·) = E(ϕj(h

⊤
j ·, yj)) at xj is available.
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Stochastic forward-backward algorithm

minimize
x∈RN

E(ϕj(h
⊤
j x, yj)) + g(Dx)

STOCHASTIC PROBLEM

⇒ At each iteration j > 1, assume that an estimate uj of the gradient
of Φ(·) = E(ϕj(h

⊤
j ·, yj)) at xj is available.

The SFB algorithm reads:

(γj)j>1 ∈]0,+∞[, (λj)j>1 ∈]0, 1]
for j = 1, 2, . . .⌊

zj = proxγjg◦D

(
xj − γjuj

)

xj+1 = (1− λj)xj + λjzj

◮ When g ≡ 0, the stochastic gradient descent (SGD) algorithm is
recovered.
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Convergence theorem [Rosasco et al., 2014]

Let F 6= ∅ denote the set of minimizers of Φ+ g ◦D. Assume that:

(i) Φ has a β-Lipschitzian gradient with β ∈]0,+∞[, g is a proper,
lower-semicontinuous convex function, and Φ+ g ◦D is strongly
convex.

(ii) For every j > 1,

E({‖uj‖
2}) < +∞, E{uj | Xj−1} = ∇Φ(xj),

E{‖uj −∇Φ(xj)‖
2 | Xj−1} 6 σ2(1 + αj‖∇Φ(xj)‖

2)

where Xj = (yi,hi)16i6j , and αj and σ are positive values such that
γj 6 (2− ǫ)/(β(1 + 2σ2αj)) with ǫ > 0.

(iii) We have ∑

j>1

λjγj = +∞ and
∑

j>1

χ2
j < +∞

where, for every j > 1, χ2
j = λjγ

2
j (1 + 2αj‖∇Φ(x)‖2) and x ∈ F.

Then, (xj)j>1 converges almost surely to an element of F.
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Bibliographical remarks
RELATED APPROACHES

◮ Methods relying on subgradient steps [Shalev-Shwartz et al., 2007],
◮ Regularized dual averaging methods [Xiao, 2010],
◮ Composite mirror descent methods [Duchi et al., 2010].

WHAT IF PROX OF g ◦D IS NOT SIMPLE?
◮ Stochastic proximal averaging strategy [Zhong et al., 2014],
◮ Conditional gradient (∼ Franck-Wolfe) techniques [Lafond, 2015],
◮ Stochastic ADMM [Ouyang et al., 2013],
◮ Block alternating strategy [Xu et al., 2014],
◮ Stochastic proximal primal-dual methods (also for varying g) [Combettes

et al., 2015].

HOW TO ACCELERATE CONVERGENCE?
◮ Subspace acceleration techniques [Hu et al., 2009][Atchadé et al., 2014],
◮ Preconditioning techniques [Duchi et al., 2011],
◮ Mixing both strategies (smooth case) [Chouzenoux et al., 2014].
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A brief focus on sparse adaptive filtering

x

(wj)j>1

(yj)j>1(hj)j>1 UNKNOWN FILTER

RANDOM INPUT SIGNAL

+

⇒ Previous stochastic problem, with (∀j > 1)ϕj(h
⊤

j x, yj) = (h⊤j x− yj)
2.
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A brief focus on sparse adaptive filtering

x

(wj)j>1

(yj)j>1(hj)j>1 UNKNOWN FILTER

RANDOM INPUT SIGNAL

+

⇒ Previous stochastic problem, with (∀j > 1)ϕj(h
⊤

j x, yj) = (h⊤j x− yj)
2.

EXISTING WORKS IN CASE OF SPARSE PRIOR:

∗ Proportionate least mean square methods (∼ Preconditioned SGD) [Paleologu
et al., 2010],

∗ Zero-attracting algorithms (∼ subgradient descent) [Chen et al, 2010],
∗ Proximal-like algorithms: SFB [Yamagashi et al., 2011] or primal-dual approach

[Ono et al., 2013],
∗ Penalized versions of recursive least squares [Angelosante et al.,2011],
∗ Over-relaxed projection algorithms [Kopsinis et al., 2011],
∗ Time-varying filters affine projection strategy (∼ mini-batch in machine

learning) [Markus et al., 2014].



Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion

HUAWEI 17/30

Simulation results

x : Time-variant linear system with 200 sparse coefficients,

h : Input sequence of 5000 random independent variables
uniformly distributed on {−1,+1},

w : White Gaussian noise with zero mean and variance 0.05.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

Values of the coefficients of the true sparse filter x for 1 6 j 6 2500
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Simulation results

x : Time-variant linear system with 200 sparse coefficients,

h : Input sequence of 5000 random independent variables
uniformly distributed on {−1,+1},

w : White Gaussian noise with zero mean and variance 0.05.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

Values of the coefficients of the true sparse filter x for 2501 6 j 6 5000
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[Chouzenoux et al., 2014]

[Kopsinis et al., 2011]

[Chen et al, 2010]

[Meng et al., 2011]

[Werner et al., 2007]

Estimation error along time, for various sparse adaptive filtering strategies

◮ The parameters of each tested method (forgetting factor,
stepsize, regularization weight, affine projection blocksize) are
optimized manually,

◮ The Stochastic Majorize-Minimize Memory gradient (S3MG)
algorithm from [Chouzenoux et al., 2014] leads to a minimal
estimation error, while benefiting from good tracking properties.
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Stochastic algorithms for solving
batch problem
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Incremental gradient algorithms

minimize
x∈RN

1

M

M∑

i=1

ϕi(h
⊤
i x, yi) + g(Dx)

BATCH PROBLEM

⇒ At each iteration n > 0, some jn ∈ {1, . . . ,M} is randomly chosen,
and only the gradient of ϕjn(h

⊤
jn
·, yjn) at xn is computed.
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Incremental gradient algorithms

minimize
x∈RN

1

M

M∑

i=1

ϕi(h
⊤
i x, yi) + g(Dx)

BATCH PROBLEM

⇒ At each iteration n > 0, some jn ∈ {1, . . . ,M} is randomly chosen,
and only the gradient of ϕjn(h

⊤
jn
·, yjn) at xn is computed.

For instance, the SAGA algorithm [Defazio et al., 2014] reads:

γ ∈]0,+∞[, and (∀i ∈ {1, . . . ,M})zi,0 = x0 ∈ R
N .

for n = 0, 1, . . .

Select randomly jn ∈ {1, . . . ,M} ,
un = hjn∇ϕjn(h

⊤
jn
xn, yjn)− hjn∇ϕjn(h

⊤
jn
zjn,n, yjn)

+ 1

M

∑M
i=1

hi∇ϕi(h
⊤
i zi,n, yi)

xn+1 = proxγg◦D

(
xn − γun

)

zjn,n+1 = xn+1, and (∀i ∈ {1, . . . ,M}) zi,n+1 = zi,n
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Convergence theorem [Defazio et al., 2014]

Let Φ(·) = 1
M

∑M
i=1 ϕi(h

⊤

i ·, yi). Denote by F 6= ∅ the set of minimizers of
Φ+ g ◦D. If:

(i) Φ is convex, β-Lipschitz differentiable on R
N , and g is proper,

lower-semicontinuous convex on R
N ,

(ii) For every n ∈ N, jn is drawn from an i.i.d. uniform distribution on
{1, . . . ,M},

Then, for γ = 1/3β, for n ∈ N
∗,

E ((Φ + g ◦D)(xn))− (Φ + g ◦D)(x̂) 6 4M
n

(
2β
M

‖x0 − x̂‖2

+Φ(x0)−∇Φ(x̂)⊤(x0 − x̂)− Φ(x̂)
)
,

where x̂ ∈ F and xn = 1
n

∑n
j=1 xj .

If, additionally, Φ is ν-strongly convex then, for γ = 1/(2(νM + β)),

E
(
‖xn − x̂‖2

)
6

(
1− ν

γ

)n (
‖x0 − x̂‖2+

2γM(Φ(x0)−∇Φ(x̂)⊤(x0 − x̂)− Φ(x̂))
)
.



Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion

HUAWEI 22/30

Bibliographical remarks

⇒ Links between stochastic incremental methods existing in
the literature:

ALGORITHM GENERAL IDEA PROS/CONS REFS

Standard incremen-
tal gradient

un = hjn∇ϕjn (h⊤

jn
xn, yjn ) simplicity / decreas-

ing stepsize required
[Bertsekas, 2010]

Variance reduction
approaches (SVRG /
mSGD)

At every K > 0 iterations, perform a full
gradient step (∼ mini-batch strategy)

reduced memory /
more gradient evalu-
ations

[Konečný, 2014],
[Johnson et al,
2014]

Gradient averaging
(SAG / SAGA)

Factor 1/M in front of gradient difference
term

lower variance / in-
creasing bias (in gra-
dient estimates)

[Schmidt et al,
2014], [Defazio et
al, 2014]

Proximal averaging
(FINITO)

xn+1 = proxγg◦D

(

zn − γun

)

with

zn average of (zi,n)16i6M

extra storage cost /
less gradient evalua-
tions

[Defazio et al.,
2014]

Majorization-
Minimization
(MISO)

xn+1 minimizer of a majorant function of

ϕjn (h⊤

jn
·, yjn ) + g ◦ D at zn

extra storage cost /
less gradient evalua-
tions

[Mairal, 2015]
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Block coordinate approaches
◮ Idea: variable splitting.

x ∈ R
N

x1 ∈ R
N1

x2 ∈ R
N2

·
·
·
·

xK ∈ R
NK

Assumption: g(Dx) =
∑K

k=1
g1,k(xk) + g2,k(Dkxk) where, for every k ∈

{1, . . . ,K}, Dk ∈ R
Pk×Nk .

g
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Stochastic primal-dual proximal algorithm [Pesquet et al., 2015]

τ ∈]0,+∞[, γ ∈]0,+∞[,
for n = 1, 2, . . .

for k = 1, 2, . . . ,K

with probability εk ∈]0, 1] do
vk,n+1 = (Id−proxτ−1g2,k

)(vk,n +Dkxk,n)

xk,n+1 = proxγg1,k

(
xk,n − γ

(
τD⊤

k (2vk+1,n − vk,n)

+ 1

M

∑M
i=1

hi,k∇ϕi(
∑K

k′=1
hT
i,k′xk′,n, yi)

))

otherwise
vk,n+1 = vk,n, xk,n+1 = xk,n.

◮ When g2,k ≡ 0, the random block coordinate forward-backward
algorithm is recovered [Combettes et al., 2015],

◮ When g1,k ≡ 0 and g2,k ≡ 0, the random block coordinate
descent algorithm is obtained [Nesterov, 2012].
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Convergence theorem [Pesquet et al., 2015]

Set, for every n ∈ N
∗, Xn = (xn′ ,vn′)16n′6n.

Let F 6= ∅ denote the set of minimizers of Φ+ g ◦D.
Assume that:

(i) Φ is convex, β-Lipschitz differentiable on R
N , g is

lower-semicontinuous convex on R
N ,

(ii) The blocks activation is performed at each iteration n
independently of Xn, with positive probabilities (ε1, . . . , εK),

(iv) The primal and dual stepsizes (τ, γ) satisfy
1

τ
− γmax16k6K ‖Dk‖

2 > β
2

,

Then, (xn)n∈N∗ converges weakly almost surely to an F-valued ran-
dom variable.
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Bibliographical remarks
CONVERGENCE ANALYSIS

◮ Almost sure convergence [Pesquet et al., 2015],
◮ Worst case convergence rates [Richtarik et al., 2014] [Necoara et al., 2014]

[Lu et al., 2015].

VARIANTS OF THE METHOD

◮ Improved convergence conditions in some specific cases [Fercoq et al.,
2015],

◮ Dual ascent strategies in the strongly convex case (∼ dual
forward-backward) [Shalev-Shwartz et al., 2014] [Jaggi et al., 2014] [Qu et al.,
2014],

◮ Douglas-Rachford/ADMM approaches [Combettes et al., 2015] [Iutzeler et

al., 2013],
◮ Asynchronous distributed algorithms [Pesquet et al., 2014] [Bianchi et al.,

2014].

⇒ Dual ascent strategies and asynchronous distributed methods are closely
related to incremental gradient algorithms.
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Simulation results
(ANR GRAPHSIP)

Original mesh, N = 100250. Noisy mesh, MSE = 2.89× 10−6.

Goal: Restore the nodes positions of an original mesh corrupted
through an additive i.i.d. zero-mean Gaussian mixture noise model,

Limited memory available ⇒ The mesh is decomposed into K/r
non-overlapping blocks with size r 6 K, and ǫ is such that only one
block is updated at each iteration.



Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion

HUAWEI 28/30

◮ Reconstruction results using the stochastic primal-dual
proximal algorithm for 3D mesh denoising from [Repetti et al., 2015]:

Proposed reconstruction Laplacian smoothing

MSE = 8.09× 10−8 MSE = 5.23× 10−7
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◮ Reconstruction results using the stochastic primal-dual
proximal algorithm for 3D mesh denoising from [Repetti et al., 2015]:
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Conclusion

Stochastic
optimization

problems

Special
case:

Adaptive
filteringAcceleration

via second-
order and/or

subspace
information

Stochastic
forward-

backward
strategies

Batch
optimization

problems

Incremental
gradient
methods

Stochastic
block-

coordinate
strategies

Distributed
versions
available
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