Parallel Optimization in Machine
Learning

Fabian Pedregosa

December 19, 2017 Huawei Paris Research Center

m
.

Berkeley — EmHzirich

- Engineer (2010-2012), Inria Saclay
(scikit-learn kickstart).

- PhD (2012-2015), Inria Saclay.
- Postdoc (2015-2016),
Dauphine-ENS-Inria Paris.

- Postdoc (2017-present), UC Berkeley
- ETH Zurich (Marie-Curie fellowship,
European Commission)

Hacker at heart ... trapped in a
researcher’s body.

1/32

Motivation

Computer add in 1993 Computer add in 2006

JADE COMPUTER
SUPER-386 f -
@

20 MHz 25 MHz Centring;, \

$ 1498 S-l) Intel°Centrino® Core™ 2 s
. 98 Duo PROCESSOR P755() Aol intel
- L | sa‘i Mi MGEE s WITH 4GB MEMORY & 50068 HARD DRIVE

1 998 $2398 *» Windows Vista® Home Premium Service Pack 1

16" Dual Channel LVDS FHD AG Dual Lamps
Full Featured Professional Systems With BrightView Infinity Display

#1049 - 150 = 899" - 50 = 93
* True 20, 25 or 33 MHz 80386 CPU * B0387 Coprocessor Socket
instar

2348 or 32 BIT RAM Expands to 6 M8« Full Size Case with 5 Half Height Reguiar Instant ~ In Mail-in

* 384K Shadow RA Drive Bay Price Savings Rebate

I MBS or 144 MB 3 101 Key Enhanced Keyboard e S i &
Floppy Disk Drive « 200 Watt Power Supply Sey¥one 8 Mat-by
« Fast 1:1 Intorioave Dual Hard Disk/ « Builtin Glock/Calendar #5941284 Robate
Dual Floppy Disk Controlier

What has changed?

2/32

Motivation

Computer add in 1993 Computer add in 2006

JADE COMPUTER
SUPER-386 /

20 MHz 25 MHz

$1 $1 Intel°Centrino® Core™ 2 Cook 1
498 *1598 Duo PROCESSOR P755) /el intel
23Nz CACHE .33 Niiziache WITH 4GB MEMORY & 50068 HARD DRIVE

———" s 1 998 $2398 *» Windows Vista® Home Premium Service Pack 1
16" Dual Channel LVDS FHD AG Dual Lamps
Full Featured Professional Systems With BrightView Infinity Display s 99
99 - 99
*1049" - 150 = °899" - 50= 849

U

1 MB or 32 BIT RAM Expands to 6 MB Full Sizo Gase with 5 Half Height Aegular Instant

+ 384K Shadow RA Beyi Price Savings
12 VB 54" or 144 MB 31 ¥ Enhanced Keybosrd °

Floppy Disk Drive . 2()0 WaH Power Supply
« Fast 111 Interloave Dual Hard Disk/ * Built-in Glock/Calendar #5941284
Dual Floppy Disk Controlier

What has changed?

2006 = no longer mentions to speed of processors.

2/32

Motivation

Computer add in 1993 Computer add in 2006
JADE COMPUTER
SUPER-386 /
20 MHz 25 MHz

$ 1 498 $1 598 Intel°Centrino® Core™ 2 Look for

Intel
Duo PROCESSOR P7550 =————= €.
25 MHz CACHE = 33 MHz Cache

Inside
WITH 4GB MEMORY & 500GB HARD DRIVE
———" s 1 998 $2398 * Windows Vista® Home Premium Service Pack 1
16" Dual Channel LVDS FHD AG Dual Lamps
Full Featured Professional Systems With BrightView Infinity Display s 9 9
. 99
o A s VR TR *1049" - 150 = °899" - 50= 849
*1MB or 32 BIT R/\M Expands to 6 MB Full Size C:nse with 5 Half Height Regular Instant
. 3MV shzdow RA 5 Price Savings
1.2 MB 5% nl1MMEE E hanced Keyboard

Floppy Disk Drive . 2()0 WaH Power Supply
« Fast 111 Interloave Dual Hard Disk/ * Built-in Glock/Calendar #5941284
Dual Floppy Disk Controlier

What has changed?

2006 = no longer mentions to speed of processors.

Primary feature: number of cores.

2/32

40 years of CPU trends

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz
Typical Power
(Watts)

Number of
Logical Cores

1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batien
New plot and data collected for 2010-2015 by K. Rupp

- Speed of CPUs has stagnated since 2005.

3/32

40 years of CPU trends

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz
Typical Power
(Watts)

Number of
Logical Cores

1970 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batien
New plot and data collected for 2010-2015 by K. Rupp

- Speed of CPUs has stagnated since 2005.
- Multi-core architectures are here to stay.

3/32

40 years of CPU trends

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz
Typical Power
(Watts)

Number of
Logical Cores

1970 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batien
New plot and data collected for 2010-2015 by K. Rupp

- Speed of CPUs has stagnated since 2005.
- Multi-core architectures are here to stay.

3/32

40 years of CPU trends

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz
Typical Power
(Watts)

Number of
Logical Cores

G0N SUNID NN & &

1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batien
New plot and data collected for 2010-2015 by K. Rupp

- Speed of CPUs has stagnated since 2005.
- Multi-core architectures are here to stay.

Parallel algorithms needed to take advantage of modern CPUs.
3/32

Parallel optimization

Parallel algorithms can be divided into two large categories:

synchronous and asynchronous.

Agent 1T iae [idic]
Agent 2] iae [
Agent ST T idie

to 3

(a) Sync-parallel computing.

Image credits: (Peng et al. 2016)

(S L3ty ts Lty Ly totig

(b) Async-parallel computing.

FiG. 1. Sync-parallel computing versus async-parallel computing.

Synchronous methods

+ Easy to implement (i.e,
developed software packages).

« Well understood.

X Limited speedup due to
synchronization costs.

Asynchronous methods

« Faster, typically larger
speedups.

% Not well understood, large gap
between theory and practice.

% No mature software solutions.
4/32

Synchronous methods
- Synchronous (stochastic) gradient descent.
Asynchronous methods
- Asynchronous stochastic gradient descent (Hogwild) (Niu et al.

2011)

- Asynchronous variance-reduced stochastic methods (Leblond, P,
and Lacoste-Julien 2017), (Pedregosa, Leblond, and
Lacoste-Julien 2017).

- Analysis of asynchronous methods.
- Codes and implementation aspects.

Leaving out many parallel synchronous methods: ADMM (Glowinski
and Marroco 1975), CoCoA (Jaggi et al. 2014), DANE (Shamir, Srebro,
and Zhang 2014), to name a few.

5/32

Most of the following is joint work with Rémi Leblond and Simon
Lacoste-Julien

Rémi Leblond Simon Lacoste—julien

6/32

Sync*onous algorithms

AL/

Optimization for machine learning

Large part of problems in machine learning can be framed as
optimization problems of the form

minimize f(x) & % P

Gradient descent (Cauchy 1847). Descend
along steepest direction (—Vf(x))

Xt =x—Vf(x)

Stochastic gradient descent (SGD)
(Robbins and Monro 1951). Select a
random index i and descent along

— Vfi(x):

o
X =X—= VVJC/(X) images source: Francis Bach

7/32

Parallel synchronous gradient descent

Computation of gradient is distributed among k workers

-

- Workers can be: different computers, CPUs ~ 5/\
or GPUs »/]

- Popular frameworks: Spark, Tensorflow, :‘ /’

: %‘ 4
PyTorch, neHadoop. \“k

8/32

Parallel synchronous gradient descent

1. Choose ns,...n, that sum to n.
2. Distribute computation of Vf(x) among kR nodes

VI = £ 3 V)

11 & 1<
:k(E;vﬁ(X)+"'+n_1 > Vi)

=Nk_4

done by worker 1 done by worker R

3. Perform the gradient descent update by a master node

xt = x—yVf(x)

9/32

Parallel synchronous gradient descent

1. Choose ns,...n, that sum to n.
2. Distribute computation of Vf(x) among kR nodes

VI = £ 3 V)

11 & 1<
:k(E;vﬁ(X)+"'+n_1 > Vi)

=Nk_4

done by worker 1 done by worker k
3. Perform the gradient descent update by a master node
xt = x—yVf(x)
« Trivial parallelization, same analysis as gradient descent.
% Synchronization step every iteration (3.).

9/32

Parallel synchronous SGD

Can also be extended to stochastic gradient descent.

1. Select k samples g, ..., i, uniformly at random.
2. Compute in parallel Vf;, on worker t

3. Perform the (mini-batch) stochastic gradient descent update

R
1
X+ =X— ,VE Z vflz(x)
t=1

10/32

Parallel synchronous SGD

Can also be extended to stochastic gradient descent.

1. Select k samples g, ..., i, uniformly at random.
2. Compute in parallel Vf;, on worker t

3. Perform the (mini-batch) stochastic gradient descent update
1k
+ vy A .
Xt =x TR ?:1 Vi (x)

« Trivial parallelization, same analysis as (mini-batch) stochastic
gradient descent.

« The kind of parallelization that is implemented in deep learning
libraries (tensorflow, PyTorch, Thano, etc.).

% Synchronization step every iteration (3.).

10/32

Asynchronous algorithms

Asynchronous SGD

Y(III [H\II'T HAVE A'SYNCHRONIZATION
__BOTTLENECK

A e

Synchronization is the bottleneck. \
¢ What if we just ignore it? ; W -

1/32

Asynchronous SGD

Y(III GAII'T HAVEA SYNCHRONIZATION
/ Bll'ITlENEI}I(

Synchronization is the bottleneck.

|
Q What if we just ignore it? }

< IFYOU DON'T SYNCHRONIZE

Hogwild (Niu et al. 2011): each core runs SGD in parallel, without
synchronization, and updates the same vector of coefficients.

In theory: convergence under very strong assumptions.

In practice: just works.

1/32

Hogwild in more detail

Each core follows the same procedure

1. Read the information from shared memory X.

2. Sample i € {1,...,n} uniformly at random.

3. Compute partial gradient Vf;(X).

4. \Write the SGD update to shared memory x = x — yVf;(X).

Other processors

Read current x
Compute update
Write to current x

Viewpoint of a single processor

12/32

Hogwild is fast

Hogwild can be very fast. But its still SGD...

URL dataset

€
S
€
£

a
o
%]
5
£
1S
)
>
2
|9}
2
)
(@)

10°
50 100 150 200" 0 2 4 6 8 10

Time (in seconds) Time (in hours)

AN/ SAGA Hogwild! (1 core) O-O SVRG
A~ A ASAGA (10 cores) Hogwild! (10 cores) 0@ Kromagnon (10 cores)

- With constant step size, bounces around the optimum.
- With decreasing step size, slow convergence.
- There are better alternatives (Emilie already mentioned some)

13/32

C tement? ...

Analysis of asynchronous methods

Simple things become counter-intuitive, e.g, how to name the
iterates?

Agons 1[I ae [aie] Agent | []
Agent 2 e [N Agent
Agent s ae

s sy
to 1y 2 ty t 2 tsly U5 tty ts totrg

(a) Sync-parallel computing. (b) Async-parallel computing.

F1G. 1. Sync-parallel computing versus async-parallel computing.

A Iterates will change depending on the speed of processors

14/32

Naming scheme in Hogwild

Simple, intuitive and wrong

Each time a core has finished writing to shared memory, increment
iteration counter.

<= X; = (t + 1)-th succesfull update to shared memory.
Value of X; and i; are not determined until the iteration has finished.

= X; and i; are not necessarily independent.

15/32

Unbiased gradient estimate

SGD-like algorithms crucially rely on the unbiased property
Ei[Vfi(x)] = Vf(x).

For synchronous algorithms, follows from the uniform sampling of i

Ei[Vfi(x)] = zn: Proba(selecting i) Vf;(x)

=1

;) n
un|form:samplmg Z %Vf,(X) _ Vf(X)
=1

16/32

A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

17/32

A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 3(f1 + f>).
Computing Vf; is much expensive than Vf,.

17/32

A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 3(f1 + f>).
Computing Vf; is much expensive than Vf,.

Start at xg. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects fj, Core 2 selects f1 = x; = X0 — YVf1(X)
2. Core 1 selects fi, Core 2 selects f, = X1 = X0 — 7V/fa(
3. Core 1 selects f,, Core 2 selects fi = X3 = X0 — YV/a(x
4. Core 1 selects f,, Core 2 selects f, = x; = Xo — YVfa(x

So we have
i 3
E; [Vfi] = Zﬁ + Zfz

1

%ot of !

17/32

A new labeling scheme

Q New way to name iterates.
“After read” labeling (Leblond, P, and Lacoste-Julien 2017). Increment

counter each time we read the vector of coefficients from shared
memory.

18/32

A new labeling scheme

< New way to name iterates.

“After read” labeling (Leblond, P, and Lacoste-Julien 2017). Increment
counter each time we read the vector of coefficients from shared
memory.

+ No dependency between i; and the cost of computing Vfi..

 full analysis of Hogwild and other asynchronous methods in
“Improved parallel stochastic optimization analysis for incremental
methods” Leblond, P, and Lacoste-julien (submitted).

18/32

The SAGA algorithm

Setting:
,I n
minimize — E;f,(x)
=
The SAGA algorithm (Defazio, Bach, and Lacoste-julien 2014).

Selecti € {1,...,n} and compute (x™,a™) as

x* =X = (VFi(x) — a; +) of = V()

- Like SGD, update is unbiased, i.e, Ei[Vfi(x) — aj + @)] = Vf(x).
- Unlike SGD, because of memory terms «, variance — 0.
- Unlike SGD, converges with fixed step size (1/3L)

19/32

The SAGA algorithm

Setting:
o 126)‘()0
mInIXmIZGE — i
=

The SAGA algorithm (Defazio, Bach, and Lacoste-julien 2014).
Selecti € {1,...,n} and compute (x™,a™) as

x* =X = (VFi(x) — a; +) of = V()

- Like SGD, update is unbiased, i.e, Ei[Vfi(x) — aj + @)] = Vf(x).
- Unlike SGD, because of memory terms «, variance — 0.
- Unlike SGD, converges with fixed step size (1/3L)

Super easy to use in scikit-learn

from sklearn.linear model import LogisticRegression
clf = LogisticRegression(solver='saga')

clf.fit(X, vy) 19/32

Sparse SAGA

Need for a sparse variant of SAGA

- A large part of large scale datasets are sparse.

- For sparse datasets and generalized linear models (e.g, least
squares, logistic regression, etc.), partial gradients Vf; are sparse
too.

- Asynchronous algorithms work best when updates are sparse.

SAGA update is inefficient for sparse data

X' =x=1(ViX) - @ + @) o = Vil

sparse sparse dense!

[scikit-learn uses many tricks to make it efficient that we cannot use
in asynchronous version]

20/32

Sparse SAGA

Sparse variant of SAGA. Relies on

- Diagonal matrix P; = projection onto the support of Vf;

- Diagonal matrix D defined as
Dj; = n/number of times V/f; is nonzero.

(Leblond, P, and Lacoste-Julien 2017)

Xt =x—(Vfi(x) — e + PiDa); o = Vfi(x)

- All operations are sparse, cost per iteration is
O(nonzeros in Vf;).

- Same convergence properties than SAGA, but with cheaper
iterations in presence of sparsity.

- Crucial property: E;[P;D] = I.

21/32

Asynchronous SAGA (ASAGA)

- Each core runs an instance of Sparse SAGA.

- Updates the same vector of coefficients a, a.

Theory: Under standard assumptions (bounded dalays), same
convergence rate than sequential version.

— theoretical linear speedup with respect to number of cores.

22/32

Experiments

£
5
£
2
S
9
3
£
€
9
>
g
2
°

50 100 15 200 24 6 8 1 015 20 s 10 15 20 2
Time (in seconds) Time (in hours) Number of cores Number of cores

SAGA © Hogwild! (1 core) 0 SVRG
A ASAGA (10 cores) Hogwild! (10 cores) [# Kromagnon (10 cores)

— Ideal A4 ASAGA [Kromagnon @— Hogwild!

(a) Suboptimality function of time. b) 2ed function of the number of

- Improved convergence of variance-reduced methods wrt SGD.
- Significant improvement between 1 and 10 cores.

- Speedup is significant, but far from ideal.

23/32

Composite objective

Previous methods assume objective function is smooth.

Cannot be applied to Lasso, Group Lasso, box constraints, etc.
Objective: minimize composite objective function:
,I n
minimize — Zf,(x) + ||x|I1
=1

where f; is smooth (and || - ||; is not). For simplicity we consider the
nonsmooth term to be ¢; norm, but this is general to any convex
function for which we have access to its proximal operator.

24/32

(Prox)SAGA

The ProxSAGA update is inefficient

xt = prox_,(x — y(Vfi(x) —)); o = Vfi(x)

o + o
—— ~—— = ¥
dense! sparse sparse densel

— a sparse variant is needed as a prerequisite for a practical
parallel method.

25/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems
Like SAGA, it relies on unbiased gradient estimate

V,':Vf,'(X) — o+ DPjax;

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems
Like SAGA, it relies on unbiased gradient estimate and proximal step

Vi=Vfi(x) — a; + DPia; x™ = prox_, (x — yvi); a;" = Vfi(x)

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

Vi=Vfi(x) — a; + DPia; x™ = prox_, (x — yvi); a;" = Vfi(x)

def

Where P;, D are as in Sparse SAGA and ¢; = Zf(P;D),7/\xj|.

@i has two key properties: i) support of ¢; = support of Vf; (sparse
updates) and ii) Ei[¢;] = ||x]1+ (unbiasedness)

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

Vi=Vfi(x) — a; + DPia; x™ = prox_, (x — yvi); a;" = Vfi(x)

def

Where P;, D are as in Sparse SAGA and ¢; = Zf(P;D),7/|xj|.

@i has two key properties: i) support of ¢; = support of Vf; (sparse
updates) and ii) Ei[¢;] = ||x]1+ (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.

26/32

Proximal Asynchronous SAGA (ProxASAGA)

Each core runs Sparse Proximal SAGA asynchronously without locks
and updates x, « and @ in shared memory.

23 All read/write operations to shared memory are inconsistent, i.e.,
no performance destroying vector-level locks while reading/writing.

Convergence: under sparsity assumptions, ProxASAGA converges
with the same rate as the sequential algorithm = theoretical
linear speedup with respect to the number of cores.

27/32

Empirical results

ProxASAGA vs competing methods on 3 large-scale datasets,
¢1-regularized logistic regression

Dataset n p density L A
KDD 2010 19,264,097 1,163,024 10=% 2812 0.15
KDD 2012 149,639,105 54,686,452 2x 107/ 1.25 0.85
Criteo 45,840,617 1,000,000 4 x107° 1.25 0.89

KDD10 dataset . 0 Criteo dataset

Objective minus optimum

28/32

Empirical results - Speedup

Time to 10~'° suboptimality on one core
Time to same suboptimality on k cores

Speedup =

Time speedup

Ideal

29/32

Empirical results - Speedup

Time to 10~'° suboptimality on one core

Speedup = Time to same suboptimality on k cores

Ideal

- ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

29/32

Empirical results - Speedup

Speedup — Time to 10~'° suboptimality on one core
g P= Time to same suboptimality on k cores

Ideal

- ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

- As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32

- Scale above 20 cores.

- Asynchronous optimization on the GPU.
- Acceleration.

- Software development.

30/32

© Code is in github: https://github.com/fabianp/ProxASAGA.

Computational code is C++ (use of atomic type) but wrapped in
Python.

A very efficient implementation of SAGA can be found in the
scikit-learn and lightning
(https://github.com/scikit-learn-contrib/lightning) libraries

31/32

https://github.com/fabianp/ProxASAGA
https://github.com/scikit-learn-contrib/lightning

References

Cauchy, Augustin (1847). “Méthode générale pour la résolution des systemes d'équations
simultanées”. In: Comp. Rend. Sci. Paris.

Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien (2014). “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives”. In: Advances in Neural
Information Processing Systems.

Glowinski, Roland and A Marroco (1975). “Sur 'approximation, par éléments finis d'ordre un, et la
résolution, par pénalisation-dualité d'une classe de problémes de Dirichlet non linéaires”. In:
Revue francaise d’automatique, informatique, recherche opérationnelle. Analyse numérique.

Jaggi, Martin et al. (2014). “Communication-Efficient Distributed Dual Coordinate Ascent”. In:
Advances in Neural Information Processing Systems 27.

Leblond, Rémi, Fabian P, and Simon Lacoste-Julien (2017). “ASAGA: asynchronous parallel SAGA”. In:
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
(AISTATS 2017).

Niu, Feng et al. (2011). “Hogwild: A lock-free approach to parallelizing stochastic gradient descent”.
In: Advances in Neural Information Processing Systems.

31/32

https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202
http://papers.nips.cc/paper/5599-communication-efficient-distributed-dual-coordinate-ascent.pdf
https://arxiv.org/abs/1606.04809v2
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf

Pedregosa, Fabian, Rémi Leblond, and Simon Lacoste-Julien (2017). “Breaking the Nonsmooth
Barrier: A Scalable Parallel Method for Composite Optimization”. In: Advances in Neural
Information Processing Systems 30.

Peng, Zhimin et al. (2016). “ARock: an algorithmic framework for asynchronous parallel coordinate
updates”. In: SIAM Journal on Scientific Computing.

Robbins, Herbert and Sutton Monro (1951). “A Stochastic Approximation Method”. In: Ann. Math.
Statist.

Shamir, Ohad, Nati Srebro, and Tong Zhang (2014). “Communication-efficient distributed
optimization using an approximate newton-type method”. In: International conference on
machine learning.

32/32

http://papers.nips.cc/paper/6611-breaking-the-nonsmooth-barrier-a-scalable-parallel-method-for-composite-optimization.pdf
http://papers.nips.cc/paper/6611-breaking-the-nonsmooth-barrier-a-scalable-parallel-method-for-composite-optimization.pdf
http://dx.doi.org/10.1137/15M1024950
http://dx.doi.org/10.1137/15M1024950
http://www.jstor.org/stable/2236626

Supervised Machine Learning

Data: n observations (a;, b)) € RP x R
Prediction function: h(a,x) € R
Motivating examples:

- Linear prediction: h(a,x) = x"a
- Neural networks: h(a,x) = x}.o(Xm—_10(- - - XJo(x]a))

Input Hidden Output
layer layer layer

ax

—_—
- \ Ouput
a /

B —

Supervised Machine Learning

Data: n observations (a;, b)) € RP x R
Prediction function: h(a,x) € R

Motivating examples:

- Linear prediction: h(a,x) = x"a
- Neural networks: h(a,x) = x},o(Xm_10(- - xjo(x]a))

Minimize some distance (e.g., quadratic) between the prediction

. . . 1 L notatlon 1
mlnlxmlzegz;ﬁ(b,-,h(a,- Zf,
=

where popular examples of £ are

- Squared loss, £(b;, h(a;, x)) de"(b —h(a,, X))?
- Logistic (softmax), £(b:, h(a;,x)) %' log(1 + exp(—b;h(a;, X))

Sparse Proximal SAGA

For step size v = o and f p-strongly convex (u > 0), Sparse Proximal
SAGA converges geometrically in expectation. At iteration t we have

Elx — x*||> < (1— % min{3, %})tCO ,

with Co = [[xo — x*|” + 55 X4 le — Vfi(x*)||? and & = £ (condition
number).

Implications

- Same convergence rate than SAGA with cheaper updates.
- In the “big data regime” (n > k): rate in O(1/n).
- In the “ill-conditioned regime” (n < k): rate in O(1/k).

- Adaptivity to strong convexity, i.e., no need to know strong
convexity parameter to obtain linear convergence.

Convergence ProxASAGA

Suppose

- If kK > n, then with step size v = 3 7, ProxASAGA converges
geometrically with rate factor Q(1).

- If kK < n, then using the step size v = 36”/ ProxASAGA converges
geometrically with rate factor Q(1).

In both cases, the convergence rate is the same as Sparse Proximal
SAGA = ProxASAGA is linearly faster up to constant factor. In both
cases the step size does not depend on .

If 7 < 6k, a universal step size of ©(1) achieves a similar rate than
Sparse Proximal SAGA, making it adaptive to local strong convexity
(knowledge of & not required).

ASAGA algorithm

Ini e shared bl
2: keep doing in parallel
L =i istent read of
stent read of a;

t random in {1,...,n}

atomic

red memory update.)

end for
end parallel lo

GA (implementation)

1: Ini d ;)i and &
2: keep doing in parallel
Sample ¢ uniforml;

Let S; be f;’s support
7 i ent d of on S;
stent read of o
1t read of @ on
) — &
+D;

andom in {1,...,n}

in S; do
[®]y = [x]y + [6a
[, [ail, + [da]
[a]y + [a
end for
end parallel lo

ProxASAGA algorithm

Algorithm 1 PROXASAGA (analyzed) Algorithm 2 PROXASAGA (implemented)
1: Initialize shared variables @ and (o;)}; : Initialize shared variables , (o), @
2: keep doing in parallel 2 keep doing in parallel

: & = inconsistent read of = 3: Sample i uniformly in {1, ...,n}
= inconsistent read of o 4: S; :=support of V f;
Sample i uniformly in {1, ..., n} 5: T, := extended support of Vf; in B
S, := support of V f; : & |7, = inconsistent read of « on T}
T; := extended support of V f; in B : = inconsistent read of ;
[alr, =325 [6]r, : E]T = inconsistent read of @ on T
dals, = [V[fi(®)]s, — [éuls, dals, = [Vfi(@)]s, — [auls,

oz = [prox T — Y0 — [z : s (w —0)|r, — [&]r,
for A]E}Tlin JLlpdo ve (& =70 = (2], . for B inT,do
for b € B do : for b in B do
[z], + [x]y + [z]p > atomic 14 [z]p + [z]p + [oz]p > atomic
if b € S; then : if b € S; then
[ai]b — [Vﬂ(:i)]b : [a]b — [E]b + 1/,.,[50]1, > atomic
end if : end if
end for : end for
end for . end for
// (‘<= denotes shared memory update.) © o < Vfi(&) (scalarupdate) > atomic
21: end parallel loop 21: end parallel loop

P]Tl=[5a]n+[13ﬂ]n ”]Tlf[a]T +[Dialr,

Atomic vs non-atomic

A /A Sequential SAGA
[[J ASAGA (2 cores)
[1 [0 ASAGA (4 cores)
®=® ASAGA CAS (2 cores)
© = ASAGA CAS (4 cores)

	Synchronous algorithms
	 mDarkTeal Asynchronous algorithms
	Looking for excitement? ... analyze asynchronous methods!
	 The Art of Naming mDarkTeal Things
	mDarkTeal Asynchronous SAGA
	Non-smooth problems
	Appendix

