
Parallel Optimization in Machine
Learning

Fabian Pedregosa

December 19, 2017 Huawei Paris Research Center

About me

• Engineer (2010-2012), Inria Saclay
(scikit-learn kickstart).

• PhD (2012-2015), Inria Saclay.
• Postdoc (2015-2016),
Dauphine–ENS–Inria Paris.

• Postdoc (2017-present), UC Berkeley
- ETH Zurich (Marie-Curie fellowship,
European Commission)

Hacker at heart ... trapped in a
researcher’s body.

1/32

Motivation

Computer add in 1993 Computer add in 2006

What has changed?

2006 = no longer mentions to speed of processors.

Primary feature: number of cores.

2/32

Motivation

Computer add in 1993 Computer add in 2006

What has changed?

2006 = no longer mentions to speed of processors.

Primary feature: number of cores.

2/32

Motivation

Computer add in 1993 Computer add in 2006

What has changed?

2006 = no longer mentions to speed of processors.

Primary feature: number of cores.

2/32

40 years of CPU trends

• Speed of CPUs has stagnated since 2005.

• Multi-core architectures are here to stay.

Parallel algorithms needed to take advantage of modern CPUs.

3/32

40 years of CPU trends

• Speed of CPUs has stagnated since 2005.
• Multi-core architectures are here to stay.

Parallel algorithms needed to take advantage of modern CPUs.

3/32

40 years of CPU trends

• Speed of CPUs has stagnated since 2005.
• Multi-core architectures are here to stay.

Parallel algorithms needed to take advantage of modern CPUs.

3/32

40 years of CPU trends

• Speed of CPUs has stagnated since 2005.
• Multi-core architectures are here to stay.

Parallel algorithms needed to take advantage of modern CPUs.
3/32

Parallel optimization

Parallel algorithms can be divided into two large categories:
synchronous and asynchronous. Image credits: (Peng et al. 2016)

Synchronous methods

 Easy to implement (i.e.,
developed software packages).

 Well understood.

 Limited speedup due to
synchronization costs.

Asynchronous methods

 Faster, typically larger
speedups.

 Not well understood, large gap
between theory and practice.

 No mature software solutions.
4/32

Outline

Synchronous methods

• Synchronous (stochastic) gradient descent.

Asynchronous methods

• Asynchronous stochastic gradient descent (Hogwild) (Niu et al.
2011)

• Asynchronous variance-reduced stochastic methods (Leblond, P.,
and Lacoste-Julien 2017), (Pedregosa, Leblond, and
Lacoste-Julien 2017).

• Analysis of asynchronous methods.
• Codes and implementation aspects.

Leaving out many parallel synchronous methods: ADMM (Glowinski
and Marroco 1975), CoCoA (Jaggi et al. 2014), DANE (Shamir, Srebro,
and Zhang 2014), to name a few.

5/32

Outline

Most of the following is joint work with Rémi Leblond and Simon
Lacoste-Julien

Rémi Leblond Simon Lacoste–Julien

6/32

Synchronous algorithms

Optimization for machine learning

Large part of problems in machine learning can be framed as
optimization problems of the form

minimize
x

f(x) def
=

1
n

n∑
i=1

fi(x)

Gradient descent (Cauchy 1847). Descend
along steepest direction (−∇f(x))

x+ = x− γ∇f(x)

Stochastic gradient descent (SGD)
(Robbins and Monro 1951). Select a
random index i and descent along
−∇fi(x):

x+ = x− γ∇fi(x) images source: Francis Bach

7/32

Parallel synchronous gradient descent

Computation of gradient is distributed among k workers

• Workers can be: different computers, CPUs
or GPUs

• Popular frameworks: Spark, Tensorflow,
PyTorch, neHadoop.

8/32

Parallel synchronous gradient descent

1. Choose n1, . . .nk that sum to n.
2. Distribute computation of ∇f(x) among k nodes

∇f(x) = 1
n
∑
i=1

∇fi(x)

=
1
k (

1
n1

n1∑
i=1

∇fi(x)︸ ︷︷ ︸
done by worker 1

+ . . .+
1
n1

nk∑
i=nk−1

∇fi(x)︸ ︷︷ ︸
done by worker k

)

3. Perform the gradient descent update by a master node

x+ = x− γ∇f(x)

 Trivial parallelization, same analysis as gradient descent.

 Synchronization step every iteration (3.).

9/32

Parallel synchronous gradient descent

1. Choose n1, . . .nk that sum to n.
2. Distribute computation of ∇f(x) among k nodes

∇f(x) = 1
n
∑
i=1

∇fi(x)

=
1
k (

1
n1

n1∑
i=1

∇fi(x)︸ ︷︷ ︸
done by worker 1

+ . . .+
1
n1

nk∑
i=nk−1

∇fi(x)︸ ︷︷ ︸
done by worker k

)

3. Perform the gradient descent update by a master node

x+ = x− γ∇f(x)

 Trivial parallelization, same analysis as gradient descent.

 Synchronization step every iteration (3.).

9/32

Parallel synchronous SGD

Can also be extended to stochastic gradient descent.

1. Select k samples i0, . . . , ik uniformly at random.
2. Compute in parallel ∇fit on worker t
3. Perform the (mini-batch) stochastic gradient descent update

x+ = x− γ
1
k

k∑
t=1

∇fit(x)

 Trivial parallelization, same analysis as (mini-batch) stochastic
gradient descent.

 The kind of parallelization that is implemented in deep learning
libraries (tensorflow, PyTorch, Thano, etc.).

 Synchronization step every iteration (3.).

10/32

Parallel synchronous SGD

Can also be extended to stochastic gradient descent.

1. Select k samples i0, . . . , ik uniformly at random.
2. Compute in parallel ∇fit on worker t
3. Perform the (mini-batch) stochastic gradient descent update

x+ = x− γ
1
k

k∑
t=1

∇fit(x)

 Trivial parallelization, same analysis as (mini-batch) stochastic
gradient descent.

 The kind of parallelization that is implemented in deep learning
libraries (tensorflow, PyTorch, Thano, etc.).

 Synchronization step every iteration (3.).

10/32

Asynchronous algorithms

Asynchronous SGD

Synchronization is the bottleneck.

 What if we just ignore it?

Hogwild (Niu et al. 2011): each core runs SGD in parallel, without
synchronization, and updates the same vector of coefficients.

In theory: convergence under very strong assumptions.

In practice: just works.

11/32

Asynchronous SGD

Synchronization is the bottleneck.

 What if we just ignore it?

Hogwild (Niu et al. 2011): each core runs SGD in parallel, without
synchronization, and updates the same vector of coefficients.

In theory: convergence under very strong assumptions.

In practice: just works.

11/32

Hogwild in more detail

Each core follows the same procedure

1. Read the information from shared memory x̂.
2. Sample i ∈ {1, . . . ,n} uniformly at random.
3. Compute partial gradient ∇fi(x̂).
4. Write the SGD update to shared memory x = x− γ∇fi(x̂).

12/32

Hogwild is fast

Hogwild can be very fast. But its still SGD...

• With constant step size, bounces around the optimum.
• With decreasing step size, slow convergence.
• There are better alternatives (Emilie already mentioned some)

13/32

Looking for excitement? ...
analyze asynchronous methods!

Analysis of asynchronous methods

Simple things become counter-intuitive, e.g, how to name the
iterates?

 Iterates will change depending on the speed of processors

14/32

Naming scheme in Hogwild

Simple, intuitive and wrong

Each time a core has finished writing to shared memory, increment
iteration counter.

⇐⇒ x̂t = (t+ 1)-th succesfull update to shared memory.

Value of x̂t and it are not determined until the iteration has finished.

=⇒ x̂t and it are not necessarily independent.

15/32

Unbiased gradient estimate

SGD-like algorithms crucially rely on the unbiased property
Ei[∇fi(x)] = ∇f(x).

For synchronous algorithms, follows from the uniform sampling of i

Ei[∇fi(x)] =
n∑
i=1

Proba(selecting i)∇fi(x)

uniform sampling
=

n∑
i=1

1
n∇fi(x) = ∇f(x)

16/32

A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 1
2 (f1 + f2).

Computing ∇f1 is much expensive than ∇f2.

Start at x0. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects f1, Core 2 selects f1 =⇒ x1 = x0 − γ∇f1(x)
2. Core 1 selects f1, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)
3. Core 1 selects f2, Core 2 selects f1 =⇒ x1 = x0 − γ∇f2(x)
4. Core 1 selects f2, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)

So we have

Ei [∇fi] =
1
4 f1 +

3
4 f2

̸= 1
2 f1 +

1
2 f2 !!

17/32

A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 1
2 (f1 + f2).

Computing ∇f1 is much expensive than ∇f2.

Start at x0. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects f1, Core 2 selects f1 =⇒ x1 = x0 − γ∇f1(x)
2. Core 1 selects f1, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)
3. Core 1 selects f2, Core 2 selects f1 =⇒ x1 = x0 − γ∇f2(x)
4. Core 1 selects f2, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)

So we have

Ei [∇fi] =
1
4 f1 +

3
4 f2

̸= 1
2 f1 +

1
2 f2 !!

17/32

A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 1
2 (f1 + f2).

Computing ∇f1 is much expensive than ∇f2.

Start at x0. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects f1, Core 2 selects f1 =⇒ x1 = x0 − γ∇f1(x)
2. Core 1 selects f1, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)
3. Core 1 selects f2, Core 2 selects f1 =⇒ x1 = x0 − γ∇f2(x)
4. Core 1 selects f2, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)

So we have

Ei [∇fi] =
1
4 f1 +

3
4 f2

̸= 1
2 f1 +

1
2 f2 !!

17/32

The Art of Naming Things

A new labeling scheme

 New way to name iterates.

“After read” labeling (Leblond, P., and Lacoste-Julien 2017). Increment
counter each time we read the vector of coefficients from shared
memory.

 No dependency between it and the cost of computing ∇fit .

 Full analysis of Hogwild and other asynchronous methods in
“Improved parallel stochastic optimization analysis for incremental
methods”, Leblond, P., and Lacoste-Julien (submitted).

18/32

A new labeling scheme

 New way to name iterates.

“After read” labeling (Leblond, P., and Lacoste-Julien 2017). Increment
counter each time we read the vector of coefficients from shared
memory.

 No dependency between it and the cost of computing ∇fit .

 Full analysis of Hogwild and other asynchronous methods in
“Improved parallel stochastic optimization analysis for incremental
methods”, Leblond, P., and Lacoste-Julien (submitted).

18/32

Asynchronous SAGA

The SAGA algorithm

Setting:

minimize
x

1
n

n∑
i=1

fi(x)

The SAGA algorithm (Defazio, Bach, and Lacoste-Julien 2014).

Select i ∈ {1, . . . ,n} and compute (x+,α+) as

x+ = x− γ(∇fi(x)−αi +α) ; α+
i = ∇fi(x)

• Like SGD, update is unbiased, i.e., Ei[∇fi(x)−αi +α)] = ∇f(x).
• Unlike SGD, because of memory terms α, variance → 0.
• Unlike SGD, converges with fixed step size (1/3L)

Super easy to use in scikit-learn

19/32

The SAGA algorithm

Setting:

minimize
x

1
n

n∑
i=1

fi(x)

The SAGA algorithm (Defazio, Bach, and Lacoste-Julien 2014).

Select i ∈ {1, . . . ,n} and compute (x+,α+) as

x+ = x− γ(∇fi(x)−αi +α) ; α+
i = ∇fi(x)

• Like SGD, update is unbiased, i.e., Ei[∇fi(x)−αi +α)] = ∇f(x).
• Unlike SGD, because of memory terms α, variance → 0.
• Unlike SGD, converges with fixed step size (1/3L)

Super easy to use in scikit-learn

19/32

Sparse SAGA

Need for a sparse variant of SAGA

• A large part of large scale datasets are sparse.
• For sparse datasets and generalized linear models (e.g., least
squares, logistic regression, etc.), partial gradients ∇fi are sparse
too.

• Asynchronous algorithms work best when updates are sparse.

SAGA update is inefficient for sparse data

x+ = x− γ(∇fi(x)︸ ︷︷ ︸
sparse

− αi︸︷︷︸
sparse

+ α︸︷︷︸
dense!

) ; α+
i = ∇fi(x)

[scikit-learn uses many tricks to make it efficient that we cannot use
in asynchronous version]

20/32

Sparse SAGA

Sparse variant of SAGA. Relies on

• Diagonal matrix Pi = projection onto the support of ∇fi
• Diagonal matrix D defined as
Dj,j = n/number of times ∇jfi is nonzero.

Sparse SAGA algorithm (Leblond, P., and Lacoste-Julien 2017)

x+ = x− γ(∇fi(x)−αi + PiDα) ; α+
i = ∇fi(x)

• All operations are sparse, cost per iteration is
O(nonzeros in ∇fi).

• Same convergence properties than SAGA, but with cheaper
iterations in presence of sparsity.

• Crucial property: Ei[PiD] = I.

21/32

Asynchronous SAGA (ASAGA)

• Each core runs an instance of Sparse SAGA.
• Updates the same vector of coefficients α,α.

Theory: Under standard assumptions (bounded dalays), same
convergence rate than sequential version.

=⇒ theoretical linear speedup with respect to number of cores.

22/32

Experiments

• Improved convergence of variance-reduced methods wrt SGD.
• Significant improvement between 1 and 10 cores.
• Speedup is significant, but far from ideal.

23/32

Non-smooth problems

Composite objective

Previous methods assume objective function is smooth.

Cannot be applied to Lasso, Group Lasso, box constraints, etc.

Objective: minimize composite objective function:

minimize
x

1
n

n∑
i=1

fi(x) + ∥x∥1

where fi is smooth (and ∥ · ∥1 is not). For simplicity we consider the
nonsmooth term to be ℓ1 norm, but this is general to any convex
function for which we have access to its proximal operator.

24/32

(Prox)SAGA

The ProxSAGA update is inefficient

x+ = proxγh︸ ︷︷ ︸
dense!

(x− γ(∇fi(x)︸ ︷︷ ︸
sparse

− αi︸︷︷︸
sparse

+ α︸︷︷︸
dense!

)) ; α+
i = ∇fi(x)

=⇒ a sparse variant is needed as a prerequisite for a practical
parallel method.

25/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

vi=∇fi(x)−αi + DPiα ; x+ = proxγφi
(x− γvi) ; α+

i = ∇fi(x)

Where Pi,D are as in Sparse SAGA and φi
def
=

∑d
j (PiD)i,i|xj|.

φi has two key properties: i) support of φi = support of ∇fi (sparse
updates) and ii) Ei[φi] = ∥x∥1 (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate

and proximal step

vi=∇fi(x)−αi + DPiα ;

x+ = proxγφi
(x− γvi) ; α+

i = ∇fi(x)

Where Pi,D are as in Sparse SAGA and φi
def
=

∑d
j (PiD)i,i|xj|.

φi has two key properties: i) support of φi = support of ∇fi (sparse
updates) and ii) Ei[φi] = ∥x∥1 (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

vi=∇fi(x)−αi + DPiα ; x+ = proxγφi
(x− γvi) ; α+

i = ∇fi(x)

Where Pi,D are as in Sparse SAGA and φi
def
=

∑d
j (PiD)i,i|xj|.

φi has two key properties: i) support of φi = support of ∇fi (sparse
updates) and ii) Ei[φi] = ∥x∥1 (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

vi=∇fi(x)−αi + DPiα ; x+ = proxγφi
(x− γvi) ; α+

i = ∇fi(x)

Where Pi,D are as in Sparse SAGA and φi
def
=

∑d
j (PiD)i,i|xj|.

φi has two key properties: i) support of φi = support of ∇fi (sparse
updates) and ii) Ei[φi] = ∥x∥1 (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.

26/32

Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

vi=∇fi(x)−αi + DPiα ; x+ = proxγφi
(x− γvi) ; α+

i = ∇fi(x)

Where Pi,D are as in Sparse SAGA and φi
def
=

∑d
j (PiD)i,i|xj|.

φi has two key properties: i) support of φi = support of ∇fi (sparse
updates) and ii) Ei[φi] = ∥x∥1 (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.

26/32

Proximal Asynchronous SAGA (ProxASAGA)

Each core runs Sparse Proximal SAGA asynchronously without locks
and updates x, α and α in shared memory.

 All read/write operations to shared memory are inconsistent, i.e.,
no performance destroying vector-level locks while reading/writing.

Convergence: under sparsity assumptions, ProxASAGA converges
with the same rate as the sequential algorithm =⇒ theoretical
linear speedup with respect to the number of cores.

27/32

Empirical results

ProxASAGA vs competing methods on 3 large-scale datasets,
ℓ1-regularized logistic regression

Dataset n p density L ∆

KDD 2010 19,264,097 1,163,024 10−6 28.12 0.15
KDD 2012 149,639,105 54,686,452 2× 10−7 1.25 0.85
Criteo 45,840,617 1,000,000 4× 10−5 1.25 0.89

0 20 40 60 80 100
Time (in minutes)

10 12

10 9

10 6

10 3

100

Ob
je

ct
ive

 m
in

us
 o

pt
im

um

KDD10 dataset

0 10 20 30 40
Time (in minutes)

10 12

10 9

10 6

10 3

KDD12 dataset

0 10 20 30 40
Time (in minutes)

10 12

10 9

10 6

10 3

100 Criteo dataset

ProxASAGA (1 core)
ProxASAGA (10 cores)

AsySPCD (1 core)
AsySPCD (10 cores)

FISTA (1 core)
FISTA (10 cores)

28/32

Empirical results - Speedup

Speedup =
Time to 10−10 suboptimality on one core
Time to same suboptimality on k cores

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20

Ti
m

e
sp

ee
du

p

KDD10 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 KDD12 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 Criteo dataset

Ideal ProxASAGA AsySPCD FISTA

• ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

• As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32

Empirical results - Speedup

Speedup =
Time to 10−10 suboptimality on one core
Time to same suboptimality on k cores

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20

Ti
m

e
sp

ee
du

p

KDD10 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 KDD12 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 Criteo dataset

Ideal ProxASAGA AsySPCD FISTA

• ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

• As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32

Empirical results - Speedup

Speedup =
Time to 10−10 suboptimality on one core
Time to same suboptimality on k cores

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20

Ti
m

e
sp

ee
du

p

KDD10 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 KDD12 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 Criteo dataset

Ideal ProxASAGA AsySPCD FISTA

• ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

• As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32

Perspectives

• Scale above 20 cores.
• Asynchronous optimization on the GPU.
• Acceleration.
• Software development.

30/32

Codes

 Code is in github: https://github.com/fabianp/ProxASAGA.

Computational code is C++ (use of atomic type) but wrapped in
Python.

A very efficient implementation of SAGA can be found in the
scikit-learn and lightning
(https://github.com/scikit-learn-contrib/lightning) libraries.

31/32

https://github.com/fabianp/ProxASAGA
https://github.com/scikit-learn-contrib/lightning

References

Cauchy, Augustin (1847). “Méthode générale pour la résolution des systemes d’équations
simultanées”. In: Comp. Rend. Sci. Paris.

Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien (2014). “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives”. In: Advances in Neural
Information Processing Systems.

Glowinski, Roland and A Marroco (1975). “Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires”. In:
Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique.

Jaggi, Martin et al. (2014). “Communication-Efficient Distributed Dual Coordinate Ascent”. In:
Advances in Neural Information Processing Systems 27.

Leblond, Rémi, Fabian P., and Simon Lacoste-Julien (2017). “ASAGA: asynchronous parallel SAGA”. In:
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
(AISTATS 2017).

Niu, Feng et al. (2011). “Hogwild: A lock-free approach to parallelizing stochastic gradient descent”.
In: Advances in Neural Information Processing Systems.

31/32

https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202
http://papers.nips.cc/paper/5599-communication-efficient-distributed-dual-coordinate-ascent.pdf
https://arxiv.org/abs/1606.04809v2
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf

Pedregosa, Fabian, Rémi Leblond, and Simon Lacoste-Julien (2017). “Breaking the Nonsmooth
Barrier: A Scalable Parallel Method for Composite Optimization”. In: Advances in Neural
Information Processing Systems 30.

Peng, Zhimin et al. (2016). “ARock: an algorithmic framework for asynchronous parallel coordinate
updates”. In: SIAM Journal on Scientific Computing.

Robbins, Herbert and Sutton Monro (1951). “A Stochastic Approximation Method”. In: Ann. Math.
Statist.

Shamir, Ohad, Nati Srebro, and Tong Zhang (2014). “Communication-efficient distributed
optimization using an approximate newton-type method”. In: International conference on
machine learning.

32/32

http://papers.nips.cc/paper/6611-breaking-the-nonsmooth-barrier-a-scalable-parallel-method-for-composite-optimization.pdf
http://papers.nips.cc/paper/6611-breaking-the-nonsmooth-barrier-a-scalable-parallel-method-for-composite-optimization.pdf
http://dx.doi.org/10.1137/15M1024950
http://dx.doi.org/10.1137/15M1024950
http://www.jstor.org/stable/2236626

Supervised Machine Learning

Data: n observations (ai,bi) ∈ Rp × R

Prediction function: h(a, x) ∈ R

Motivating examples:

• Linear prediction: h(a, x) = xTa
• Neural networks: h(a, x) = xTmσ(xm−1σ(· · · xT2σ(xT1a))

Input
layer

Hidden
layer

Output
layer

a1

a2

a3

a4

a5

Ouput

Supervised Machine Learning

Data: n observations (ai,bi) ∈ Rp × R

Prediction function: h(a, x) ∈ R

Motivating examples:

• Linear prediction: h(a, x) = xTa
• Neural networks: h(a, x) = xTmσ(xm−1σ(· · · xT2σ(xT1a))

Minimize some distance (e.g., quadratic) between the prediction

minimize
x

1
n

n∑
i=1

ℓ(bi,h(ai, x))
notation
=

1
n

n∑
i=1

fi(x)

where popular examples of ℓ are

• Squared loss, ℓ(bi,h(ai, x))
def
= (bi − h(ai, x))2

• Logistic (softmax), ℓ(bi,h(ai, x))
def
= log(1+ exp(−bih(ai, x)))

Sparse Proximal SAGA

For step size γ = 1
5L and f µ-strongly convex (µ > 0), Sparse Proximal

SAGA converges geometrically in expectation. At iteration t we have

E∥xt − x∗∥2 ≤ (1− 1
5 min{ 1

n ,
1
κ})

t C0 ,

with C0 = ∥x0 − x∗∥2 + 1
5L2

∑n
i=1 ∥α0

i −∇fi(x∗)∥2 and κ = L
µ (condition

number).

Implications

• Same convergence rate than SAGA with cheaper updates.
• In the “big data regime” (n ≥ κ): rate in O(1/n).
• In the “ill-conditioned regime” (n ≤ κ): rate in O(1/κ).

• Adaptivity to strong convexity, i.e., no need to know strong
convexity parameter to obtain linear convergence.

Convergence ProxASAGA

Suppose τ ≤ 1
10
√
∆
. Then:

• If κ ≥ n, then with step size γ = 1
36L , ProxASAGA converges

geometrically with rate factor Ω(1
κ).

• If κ < n, then using the step size γ = 1
36nµ , ProxASAGA converges

geometrically with rate factor Ω(1
n).

In both cases, the convergence rate is the same as Sparse Proximal
SAGA =⇒ ProxASAGA is linearly faster up to constant factor. In both
cases the step size does not depend on τ .

If τ ≤ 6κ, a universal step size of Θ(1L) achieves a similar rate than
Sparse Proximal SAGA, making it adaptive to local strong convexity
(knowledge of κ not required).

ASAGA algorithm

ProxASAGA algorithm

Atomic vs non-atomic

	Synchronous algorithms
	 mDarkTeal Asynchronous algorithms
	Looking for excitement? ... analyze asynchronous methods!
	 The Art of Naming mDarkTeal Things
	mDarkTeal Asynchronous SAGA
	Non-smooth problems
	Appendix

