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Motivation

Computer add in 1993 Computer add in 2006

What has changed?

2006 = no longer mentions to speed of processors.

Primary feature: number of cores.
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40 years of CPU trends

• Speed of CPUs has stagnated since 2005.

• Multi-core architectures are here to stay.

Parallel algorithms needed to take advantage of modern CPUs.
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Parallel optimization

Parallel algorithms can be divided into two large categories:
synchronous and asynchronous. Image credits: (Peng et al. 2016)

Synchronous methods

 Easy to implement (i.e.,
developed software packages).

 Well understood.

 Limited speedup due to
synchronization costs.

Asynchronous methods

 Faster, typically larger
speedups.

 Not well understood, large gap
between theory and practice.

 No mature software solutions.
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Outline

Synchronous methods

• Synchronous (stochastic) gradient descent.

Asynchronous methods

• Asynchronous stochastic gradient descent (Hogwild) (Niu et al.
2011)

• Asynchronous variance-reduced stochastic methods (Leblond, P.,
and Lacoste-Julien 2017), (Pedregosa, Leblond, and
Lacoste-Julien 2017).

• Analysis of asynchronous methods.
• Codes and implementation aspects.

Leaving out many parallel synchronous methods: ADMM (Glowinski
and Marroco 1975), CoCoA (Jaggi et al. 2014), DANE (Shamir, Srebro,
and Zhang 2014), to name a few.
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Outline

Most of the following is joint work with Rémi Leblond and Simon
Lacoste-Julien

Rémi Leblond Simon Lacoste–Julien
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Synchronous algorithms



Optimization for machine learning

Large part of problems in machine learning can be framed as
optimization problems of the form

minimize
x

f(x) def
=

1
n

n∑
i=1

fi(x)

Gradient descent (Cauchy 1847). Descend
along steepest direction (−∇f(x))

x+ = x− γ∇f(x)

Stochastic gradient descent (SGD)
(Robbins and Monro 1951). Select a
random index i and descent along
−∇fi(x):

x+ = x− γ∇fi(x) images source: Francis Bach
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Parallel synchronous gradient descent

Computation of gradient is distributed among k workers

• Workers can be: different computers, CPUs
or GPUs

• Popular frameworks: Spark, Tensorflow,
PyTorch, neHadoop.
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Parallel synchronous gradient descent

1. Choose n1, . . .nk that sum to n.
2. Distribute computation of ∇f(x) among k nodes

∇f(x) = 1
n
∑
i=1

∇fi(x)

=
1
k (

1
n1

n1∑
i=1

∇fi(x)︸ ︷︷ ︸
done by worker 1

+ . . .+
1
n1

nk∑
i=nk−1

∇fi(x)︸ ︷︷ ︸
done by worker k

)

3. Perform the gradient descent update by a master node

x+ = x− γ∇f(x)

 Trivial parallelization, same analysis as gradient descent.

 Synchronization step every iteration (3.).
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Parallel synchronous SGD

Can also be extended to stochastic gradient descent.

1. Select k samples i0, . . . , ik uniformly at random.
2. Compute in parallel ∇fit on worker t
3. Perform the (mini-batch) stochastic gradient descent update

x+ = x− γ
1
k

k∑
t=1

∇fit(x)

 Trivial parallelization, same analysis as (mini-batch) stochastic
gradient descent.

 The kind of parallelization that is implemented in deep learning
libraries (tensorflow, PyTorch, Thano, etc.).

 Synchronization step every iteration (3.).
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Asynchronous algorithms



Asynchronous SGD

Synchronization is the bottleneck.

 What if we just ignore it?

Hogwild (Niu et al. 2011): each core runs SGD in parallel, without
synchronization, and updates the same vector of coefficients.

In theory: convergence under very strong assumptions.

In practice: just works.
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Hogwild in more detail

Each core follows the same procedure

1. Read the information from shared memory x̂.
2. Sample i ∈ {1, . . . ,n} uniformly at random.
3. Compute partial gradient ∇fi(x̂).
4. Write the SGD update to shared memory x = x− γ∇fi(x̂).

12/32



Hogwild is fast

Hogwild can be very fast. But its still SGD...

• With constant step size, bounces around the optimum.
• With decreasing step size, slow convergence.
• There are better alternatives (Emilie already mentioned some)
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Looking for excitement? ...
analyze asynchronous methods!



Analysis of asynchronous methods

Simple things become counter-intuitive, e.g, how to name the
iterates?

 Iterates will change depending on the speed of processors
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Naming scheme in Hogwild

Simple, intuitive and wrong

Each time a core has finished writing to shared memory, increment
iteration counter.

⇐⇒ x̂t = (t+ 1)-th succesfull update to shared memory.

Value of x̂t and it are not determined until the iteration has finished.

=⇒ x̂t and it are not necessarily independent.
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Unbiased gradient estimate

SGD-like algorithms crucially rely on the unbiased property
Ei[∇fi(x)] = ∇f(x).

For synchronous algorithms, follows from the uniform sampling of i

Ei[∇fi(x)] =
n∑
i=1

Proba(selecting i)∇fi(x)

uniform sampling
=

n∑
i=1

1
n∇fi(x) = ∇f(x)
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A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 1
2 (f1 + f2).

Computing ∇f1 is much expensive than ∇f2.

Start at x0. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects f1, Core 2 selects f1 =⇒ x1 = x0 − γ∇f1(x)
2. Core 1 selects f1, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)
3. Core 1 selects f2, Core 2 selects f1 =⇒ x1 = x0 − γ∇f2(x)
4. Core 1 selects f2, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)

So we have

Ei [∇fi] =
1
4 f1 +

3
4 f2

̸= 1
2 f1 +

1
2 f2 !!

17/32



A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 1
2 (f1 + f2).

Computing ∇f1 is much expensive than ∇f2.

Start at x0. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects f1, Core 2 selects f1 =⇒ x1 = x0 − γ∇f1(x)
2. Core 1 selects f1, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)
3. Core 1 selects f2, Core 2 selects f1 =⇒ x1 = x0 − γ∇f2(x)
4. Core 1 selects f2, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)

So we have

Ei [∇fi] =
1
4 f1 +

3
4 f2

̸= 1
2 f1 +

1
2 f2 !!

17/32



A problematic example

This labeling scheme is incompatible with unbiasedness assumption
used in proofs.

Illustration: problem with two samples and two cores f = 1
2 (f1 + f2).

Computing ∇f1 is much expensive than ∇f2.

Start at x0. Because of the random sampling there are 4 possible
scenarios:

1. Core 1 selects f1, Core 2 selects f1 =⇒ x1 = x0 − γ∇f1(x)
2. Core 1 selects f1, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)
3. Core 1 selects f2, Core 2 selects f1 =⇒ x1 = x0 − γ∇f2(x)
4. Core 1 selects f2, Core 2 selects f2 =⇒ x1 = x0 − γ∇f2(x)

So we have

Ei [∇fi] =
1
4 f1 +

3
4 f2

̸= 1
2 f1 +

1
2 f2 !!

17/32



The Art of Naming Things



A new labeling scheme

 New way to name iterates.

“After read” labeling (Leblond, P., and Lacoste-Julien 2017). Increment
counter each time we read the vector of coefficients from shared
memory.

 No dependency between it and the cost of computing ∇fit .

 Full analysis of Hogwild and other asynchronous methods in
“Improved parallel stochastic optimization analysis for incremental
methods”, Leblond, P., and Lacoste-Julien (submitted).
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Asynchronous SAGA



The SAGA algorithm

Setting:

minimize
x

1
n

n∑
i=1

fi(x)

The SAGA algorithm (Defazio, Bach, and Lacoste-Julien 2014).

Select i ∈ {1, . . . ,n} and compute (x+,α+) as

x+ = x− γ(∇fi(x)−αi +α) ; α+
i = ∇fi(x)

• Like SGD, update is unbiased, i.e., Ei[∇fi(x)−αi +α)] = ∇f(x).
• Unlike SGD, because of memory terms α, variance → 0.
• Unlike SGD, converges with fixed step size (1/3L)

Super easy to use in scikit-learn
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Sparse SAGA

Need for a sparse variant of SAGA

• A large part of large scale datasets are sparse.
• For sparse datasets and generalized linear models (e.g., least
squares, logistic regression, etc.), partial gradients ∇fi are sparse
too.

• Asynchronous algorithms work best when updates are sparse.

SAGA update is inefficient for sparse data

x+ = x− γ(∇fi(x)︸ ︷︷ ︸
sparse

− αi︸︷︷︸
sparse

+ α︸︷︷︸
dense!

) ; α+
i = ∇fi(x)

[scikit-learn uses many tricks to make it efficient that we cannot use
in asynchronous version]
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Sparse SAGA

Sparse variant of SAGA. Relies on

• Diagonal matrix Pi = projection onto the support of ∇fi
• Diagonal matrix D defined as
Dj,j = n/number of times ∇jfi is nonzero.

Sparse SAGA algorithm (Leblond, P., and Lacoste-Julien 2017)

x+ = x− γ(∇fi(x)−αi + PiDα) ; α+
i = ∇fi(x)

• All operations are sparse, cost per iteration is
O(nonzeros in ∇fi).

• Same convergence properties than SAGA, but with cheaper
iterations in presence of sparsity.

• Crucial property: Ei[PiD] = I.
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Asynchronous SAGA (ASAGA)

• Each core runs an instance of Sparse SAGA.
• Updates the same vector of coefficients α,α.

Theory: Under standard assumptions (bounded dalays), same
convergence rate than sequential version.

=⇒ theoretical linear speedup with respect to number of cores.
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Experiments

• Improved convergence of variance-reduced methods wrt SGD.
• Significant improvement between 1 and 10 cores.
• Speedup is significant, but far from ideal.
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Non-smooth problems



Composite objective

Previous methods assume objective function is smooth.

Cannot be applied to Lasso, Group Lasso, box constraints, etc.

Objective: minimize composite objective function:

minimize
x

1
n

n∑
i=1

fi(x) + ∥x∥1

where fi is smooth (and ∥ · ∥1 is not). For simplicity we consider the
nonsmooth term to be ℓ1 norm, but this is general to any convex
function for which we have access to its proximal operator.
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(Prox)SAGA

The ProxSAGA update is inefficient

x+ = proxγh︸ ︷︷ ︸
dense!

(x− γ(∇fi(x)︸ ︷︷ ︸
sparse

− αi︸︷︷︸
sparse

+ α︸︷︷︸
dense!

)) ; α+
i = ∇fi(x)

=⇒ a sparse variant is needed as a prerequisite for a practical
parallel method.
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Sparse Proximal SAGA

Sparse Proximal SAGA. (Pedregosa, Leblond, and Lacoste-Julien 2017)
Extension of Sparse SAGA to composite optimization problems

Like SAGA, it relies on unbiased gradient estimate and proximal step

vi=∇fi(x)−αi + DPiα ; x+ = proxγφi
(x− γvi) ; α+

i = ∇fi(x)

Where Pi,D are as in Sparse SAGA and φi
def
=

∑d
j (PiD)i,i|xj|.

φi has two key properties: i) support of φi = support of ∇fi (sparse
updates) and ii) Ei[φi] = ∥x∥1 (unbiasedness)

Convergence: same linear convergence rate as SAGA, with cheaper
updates in presence of sparsity.
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Proximal Asynchronous SAGA (ProxASAGA)

Each core runs Sparse Proximal SAGA asynchronously without locks
and updates x, α and α in shared memory.

 All read/write operations to shared memory are inconsistent, i.e.,
no performance destroying vector-level locks while reading/writing.

Convergence: under sparsity assumptions, ProxASAGA converges
with the same rate as the sequential algorithm =⇒ theoretical
linear speedup with respect to the number of cores.
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Empirical results

ProxASAGA vs competing methods on 3 large-scale datasets,
ℓ1-regularized logistic regression

Dataset n p density L ∆

KDD 2010 19,264,097 1,163,024 10−6 28.12 0.15
KDD 2012 149,639,105 54,686,452 2× 10−7 1.25 0.85
Criteo 45,840,617 1,000,000 4× 10−5 1.25 0.89
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Empirical results - Speedup

Speedup =
Time to 10−10 suboptimality on one core
Time to same suboptimality on k cores
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• ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

• As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32



Empirical results - Speedup

Speedup =
Time to 10−10 suboptimality on one core
Time to same suboptimality on k cores

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20

Ti
m

e 
sp

ee
du

p

KDD10 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 KDD12 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 Criteo dataset

Ideal ProxASAGA AsySPCD FISTA

• ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

• As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32



Empirical results - Speedup

Speedup =
Time to 10−10 suboptimality on one core
Time to same suboptimality on k cores

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20

Ti
m

e 
sp

ee
du

p

KDD10 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 KDD12 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 Criteo dataset

Ideal ProxASAGA AsySPCD FISTA

• ProxASAGA achieves speedups between 6x and 12x on a 20 cores
architecture.

• As predicted by theory, there is a high correlation between
degree of sparsity and speedup.

29/32



Perspectives

• Scale above 20 cores.
• Asynchronous optimization on the GPU.
• Acceleration.
• Software development.
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Codes

 Code is in github: https://github.com/fabianp/ProxASAGA.

Computational code is C++ (use of atomic type) but wrapped in
Python.

A very efficient implementation of SAGA can be found in the
scikit-learn and lightning
(https://github.com/scikit-learn-contrib/lightning) libraries.
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Supervised Machine Learning

Data: n observations (ai,bi) ∈ Rp × R

Prediction function: h(a, x) ∈ R

Motivating examples:

• Linear prediction: h(a, x) = xTa
• Neural networks: h(a, x) = xTmσ(xm−1σ(· · · xT2σ(xT1a))
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layer
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Ouput



Supervised Machine Learning

Data: n observations (ai,bi) ∈ Rp × R

Prediction function: h(a, x) ∈ R

Motivating examples:

• Linear prediction: h(a, x) = xTa
• Neural networks: h(a, x) = xTmσ(xm−1σ(· · · xT2σ(xT1a))

Minimize some distance (e.g., quadratic) between the prediction

minimize
x

1
n

n∑
i=1

ℓ(bi,h(ai, x))
notation
=

1
n

n∑
i=1

fi(x)

where popular examples of ℓ are

• Squared loss, ℓ(bi,h(ai, x))
def
= (bi − h(ai, x))2

• Logistic (softmax), ℓ(bi,h(ai, x))
def
= log(1+ exp(−bih(ai, x)))



Sparse Proximal SAGA

For step size γ = 1
5L and f µ-strongly convex (µ > 0), Sparse Proximal

SAGA converges geometrically in expectation. At iteration t we have

E∥xt − x∗∥2 ≤ (1− 1
5 min{ 1

n ,
1
κ})

t C0 ,

with C0 = ∥x0 − x∗∥2 + 1
5L2

∑n
i=1 ∥α0

i −∇fi(x∗)∥2 and κ = L
µ (condition

number).

Implications

• Same convergence rate than SAGA with cheaper updates.
• In the “big data regime” (n ≥ κ): rate in O(1/n).
• In the “ill-conditioned regime” (n ≤ κ): rate in O(1/κ).

• Adaptivity to strong convexity, i.e., no need to know strong
convexity parameter to obtain linear convergence.



Convergence ProxASAGA

Suppose τ ≤ 1
10
√
∆
. Then:

• If κ ≥ n, then with step size γ = 1
36L , ProxASAGA converges

geometrically with rate factor Ω( 1
κ ).

• If κ < n, then using the step size γ = 1
36nµ , ProxASAGA converges

geometrically with rate factor Ω( 1
n ).

In both cases, the convergence rate is the same as Sparse Proximal
SAGA =⇒ ProxASAGA is linearly faster up to constant factor. In both
cases the step size does not depend on τ .

If τ ≤ 6κ, a universal step size of Θ( 1L ) achieves a similar rate than
Sparse Proximal SAGA, making it adaptive to local strong convexity
(knowledge of κ not required).



ASAGA algorithm



ProxASAGA algorithm



Atomic vs non-atomic
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