
Batch, Stochastic and Mirror
Gradient Descents

Gabriel Peyré

ÉCOLE NORMALE
S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

Alex Gramfort Algorithms for the Lasso

Outline

2

• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com

Optimal Transport
Geodesics

Meshes

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

Optimization Deep Learning

G K Nicholls et al. 5

data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree

G
afat

Argobba
Am

haric

Harari

Zway
W

alani

M
esqan

Innem
or

Chaha
G

eto

M
esm

es
Soddo

Tigrinya
Tigre

Akkadian

O
gadenArabic

M
oroccanArabic

M
ehri

Harsusi

Jibbali

Soqotri

Hebrew
Aram

aic

82

69

98

99

79

67

0
1000

2000
3000

4000
5000

FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.

Sparsity
Neuro-imaging Patches Bayesian

Parallel/Stochastic

https://mathematical-coffees.github.io

Alexandre Allauzen, Paris-Sud.
Pierre Alliez, INRIA.

Guillaume Charpiat, INRIA.
Emilie Chouzenoux, Paris-Est.

Nicolas Courty, IRISA.
Laurent Cohen, CNRS Dauphine.

Marco Cuturi, ENSAE.
Julie Delon, Paris 5.

Jalal Fadili, ENSICaen.
Alexandre Gramfort, INRIA.
Matthieu Kowalski, Supelec.

Jean-Marie Mirebeau, CNRS,P-Sud.

Fabian Pedregosa, INRIA.
Julien Tierny, CNRS and P6.

Robin Ryder, Paris-Dauphine.
Gael Varoquaux, INRIA.

Organized by: Mérouane Debbah & Gabriel Peyré

https://mathematical-coffees.github.io

Optimization Everywhere …

Inverse problems: Observations y = Ax0 + w.

Regularized recovery: min
x

f(x)
def.
= ||y �Ax||2 +R(x).

Optimization Everywhere …

Inverse problems: Observations y = Ax0 + w.

Regularized recovery: min
x

f(x)
def.
= ||y �Ax||2 +R(x).

Supervised learning: Observations: (ai, yi)i, parametric model: g(x, a)

Classification:

Regression: yi ⇡ g(x, ai)

yi ⇡ ✓(g(x, ai))
✓(u) = (1 + eu)�1

Empirical risk minimization: min
x

f(x) = 1
n

P
i `(g(x, ai), yi)

`(y, y0) = |y � y0|2

`(y, y0) = log(1 + e�yy0
)

Optimization Everywhere …

Inverse problems: Observations y = Ax0 + w.

Regularized recovery: min
x

f(x)
def.
= ||y �Ax||2 +R(x).

Supervised learning: Observations: (ai, yi)i, parametric model: g(x, a)

Classification:

Regression: yi ⇡ g(x, ai)

yi ⇡ ✓(g(x, ai))
✓(u) = (1 + eu)�1

Empirical risk minimization: min
x

f(x) = 1
n

P
i `(g(x, ai), yi)

`(y, y0) = |y � y0|2

`(y, y0) = log(1 + e�yy0
)

min
x

f(x)

f(x)
def.
= Ez(f(x, z))f(x)

def.
= 1

n

Pn
i=1 fi(x)

finite sum / empirical integral / expectation

sampling

n ! +1

Batch Gradient Descent
xk+1 = xk � ⌧krf(xk)

"
def.
=

L

µ
6 1

Conditionning:

f(x)U(x)

T (x)

x0

T (x)
def.
= f(x0) + hrf(x0), x� x0i

Hypotheses: µIdn � @2f(x) � L Idn
strong convexity smoothness

V (x)
U(x)

def.
= T (x) +

L

2
||x� x0||2

V (x)
def.
= T (x) +

µ

2
||x� x0||2

) ||x� x?||2 6 f(x0)� f(x?)

µ/2

Batch Gradient Descent
xk+1 = xk � ⌧krf(xk)

"
def.
=

L

µ
6 1

Conditionning:

Theorem: 0 < ⌧ <
2

L
f(xk)� f(x?) 6 C

`+ 1

||xk � x?|| 6 ⇢`||x0 � x?||
⇢ = (1 + ")�

1
2 < 1

If L < +1,

If µ > 0, L < +1, 0 < ⌧ <
2

L

f(x)U(x)

T (x)

x0

T (x)
def.
= f(x0) + hrf(x0), x� x0i

Hypotheses: µIdn � @2f(x) � L Idn
strong convexity smoothness

V (x)
U(x)

def.
= T (x) +

L

2
||x� x0||2

V (x)
def.
= T (x) +

µ

2
||x� x0||2

) ||x� x?||2 6 f(x0)� f(x?)

µ/2

Small ⌧` Large ⌧`

x`+1 = x` � ⌧`rf(x`)

⌧?` = argmin
⌧

f(x` � ⌧rf(x`))

Optimal ⌧` = ⌧?`
⌧
?

`
rf

(x̀
)

⌧ ?
`+

1 r
f(x̀

+
1)

x`

x`+1

rf(x`)?rf(x`+1)

Step size matters …

Nesterov

xk+1 = xk + pk
Polyak

Yurii
Nesterov

Boris
Polyak

µ = 0

µ = 0.95
µ = 0.5

Acceleration

pk+1 = µkpk � ⌧

⇢
rf(xk)
rf(xk + µkpk)

Theorem: [Nesterov]

For µk = k
k+3 , then

f(xk)� f(x?) = O(1/k2)

Momentum
“heavy ball”

! “optimal”

for first order

schemes.

Bregman divergence:

D'(x|y)
def.
= '(x)� '(y)� hx� y, r'(y)i

y

0
'(x) = ||x||2 '(x) =

P
i �

p
xi'(x) =

P
i � log(xi)'(x) =

P
i xi log(xi)

D'(·|y)
1
2

x

'

y

D'(x|y)

Generalization: Bregman Divergence

Bregman divergence:

D'(x|y)
def.
= '(x)� '(y)� hx� y, r'(y)i

y

0
'(x) = ||x||2 '(x) =

P
i �

p
xi'(x) =

P
i � log(xi)'(x) =

P
i xi log(xi)

D'(·|y)
1
2

x

'

y

D'(x|y)

Generalization: Bregman Divergence

generalizes to Bregman divergences.
“Rule of thumb:” any reasonnable Euclidean algorithm

Locally Euclidean:

D'(x+ ⌘|x+ ") =
1

2
h@2'(x)("� ⌘), "� ⌘i+ o(||"� ⌘||2)

Bregman divergence: D'(x|y)
def.
= '(x)� '(y)� hx� y, r'(y)i

xk+1 = argmin
x2X

D'(x|xk) + ⌧hrf(xk), xi

= (r')�1 (r'(xk)� ⌧rf(xk))

Mirror descent:

'(x) = ||x||2 '(x) =
P

i xi log(xi) '(x) =
P

i �
p
xi'(x) =

P
i � log(xi)

X = R2
+

0 0

Example: Mirror Descent

Stochastic Gradient Descent

f(x)
def.
= Ez(f(x, z))f(x)

def.
= 1

n

Pn
i=1 fi(x)

rf(x) = 1
n

P
i rfi(x) rf(x)

def.
= Ez(rF (x, z))

rf(x)

rF (x, z)
z ⇠ z

rf(x)
rfi(x)

Draw i 2 {1, . . . , n} uniformly.

xk+1 = xk � ⌧krfi(xk) xk+1 = xk � ⌧krF (x, z)

Draw z ⇠ z

Stochastic Gradient Descent

f(x)
def.
= Ez(f(x, z))f(x)

def.
= 1

n

Pn
i=1 fi(x)

rf(x) = 1
n

P
i rfi(x) rf(x)

def.
= Ez(rF (x, z))

rf(x)

rF (x, z)
z ⇠ z

rf(x)
rfi(x)

Draw i 2 {1, . . . , n} uniformly.

xk+1 = xk � ⌧krfi(xk) xk+1 = xk � ⌧krF (x, z)

Draw z ⇠ z

Theorem: If µ > 0 and ||rfi(x)|| 6 C, then for ⌧k = 1
µ(k+1) ,

E(||xk � x?||2) 6 R

k + 1
where R

def.
= max(||x0 � x?||2, C2/µ2)

⌧k ! 0 to cancel gradient noise.

No benefit from strong convexity.
�! Only useful when n is very large.

x`+1
def.
=

(
x` � 1

`rf1(x`) with proba 1
2

x` � 1
`rf2(x`) with proba 1

2

``

x`

= f1(x) = f2(x)

min
x2R

(x+ 1)2 + (x� 1)2

Simple Example

What’s Next

Emilie Chouzenoux: stochastic optimization.

Fabian Pedregosa: parallel and distributed optimization.

