Batch, Stochastic and Mirror

Gradient Descents

Gabriel Peyré

www. numerical-tours.com

Organized by: Mérouane Debbah \& Gabriel Peyré

Alexandre Allauzen, Paris-Sud. Pierre Alliez, INRIA.
Guillaume Charpiat, INRIA. Emilie Chouzenoux, Paris-Est.

Nicolas Courty, IRISA. Laurent Cohen, CNRS Dauphine. Marco Cuturi, ENSAE. Julie Delon, Paris 5.

Fabian Pedregosa, INRIA.
Julien Tierny, CNRS and P6.
Robin Ryder, Paris-Dauphine.
Gael Varoquaux, INRIA.

Jalal Fadili, ENSICaen.
Alexandre Gramfort, INRIA.
Matthieu Kowalski, Supelec.
Jean-Marie Mirebeau, CNRS,P-Sud.

Optimization Everywhere ...

Inverse problems: Observations $y=A x_{0}+w$.
Regularized recovery: $\min _{x} f(x) \stackrel{\text { def. }}{=}\|y-A x\|^{2}+R(x)$.

Optimization Everywhere

Inverse problems: Observations $y=A x_{0}+w$.
Regularized recovery: $\min _{x} f(x) \stackrel{\text { def. }}{=}\|y-A x\|^{2}+R(x)$.
Supervised learning: Observations: $\left(a_{i}, y_{i}\right)_{i}$, parametric model: $g(x, a)$
Regression: $\quad y_{i} \approx g\left(x, a_{i}\right) \quad \ell\left(y, y^{\prime}\right)=\left|y-y^{\prime}\right|^{2}$
Classification: $\quad y_{i} \approx \theta\left(g\left(x, a_{i}\right)\right) \quad \ell\left(y, y^{\prime}\right)=\log \left(1+e^{-y y^{\prime}}\right)$ $\theta(u)=\left(1+e^{u}\right)^{-1}$
Empirical risk minimization: $\min _{x} f(x)=\frac{1}{n} \sum_{i} \ell\left(g\left(x, a_{i}\right), y_{i}\right)$

Optimization Everywhere

Inverse problems: Observations $y=A x_{0}+w$.
Regularized recovery: $\min _{x} f(x) \stackrel{\text { def. }}{=}\|y-A x\|^{2}+R(x)$.
Supervised learning: Observations: $\left(a_{i}, y_{i}\right)_{i}$, parametric model: $g(x, a)$
Regression: $\quad y_{i} \approx g\left(x, a_{i}\right) \quad \ell\left(y, y^{\prime}\right)=\left|y-y^{\prime}\right|^{2}$
Classification: $\quad y_{i} \approx \theta\left(g\left(x, a_{i}\right)\right) \quad \ell\left(y, y^{\prime}\right)=\log \left(1+e^{-y y^{\prime}}\right)$

$$
\theta(u)=\left(1+e^{u}\right)^{-1}
$$

Empirical risk minimization: $\min _{x} f(x)=\frac{1}{n} \sum_{i} \ell\left(g\left(x, a_{i}\right), y_{i}\right)$

Batch Gradient Descent

$$
x_{k+1}=x_{k}-\tau_{k} \nabla f\left(x_{k}\right)
$$

Hypotheses: $\quad \mu \operatorname{Id}_{n} \preceq \partial^{2} f(x) \preceq L \operatorname{Id}_{n}$ strong convexity smoothness

Conditionning:

$$
\varepsilon \stackrel{\text { def. }}{=} \frac{L}{\mu} \leqslant 1
$$

$$
\begin{aligned}
& T(x) \stackrel{\text { def. }}{=} f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \\
& U(x) \stackrel{\text { def. }}{=} T(x)+\frac{L}{2}\left\|x-x_{0}\right\|^{2} \\
& V(x) \stackrel{\text { def. }}{=} T(x)+\frac{\mu}{2}\left\|x-x_{0}\right\|^{2} \\
& \Rightarrow\left\|x-x^{\star}\right\|^{2} \leqslant \frac{f\left(x_{0}\right)-f\left(x^{\star}\right)}{\mu / 2}
\end{aligned}
$$

Batch Gradient Descent

$$
x_{k+1}=x_{k}-\tau_{k} \nabla f\left(x_{k}\right)
$$

Hypotheses: $\quad \mu \operatorname{Id}_{n} \preceq \partial^{2} f(x) \preceq L \operatorname{Id}_{n}$ strong convexity smoothness

Conditionning:

$$
\varepsilon \stackrel{\text { def. }}{=} \frac{L}{\mu} \leqslant 1
$$

$$
\begin{aligned}
& T(x) \stackrel{\text { def. }}{=} f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \\
& U(x) \stackrel{\text { def. }}{=} T(x)+\frac{L}{2}\left\|x-x_{0}\right\|^{2} \\
& V(x) \stackrel{\text { def. }}{=} T(x)+\frac{\mu}{2}\left\|x-x_{0}\right\|^{2} \\
& \Rightarrow\left\|x-x^{\star}\right\|^{2} \leqslant \frac{f\left(x_{0}\right)-f\left(x^{\star}\right)}{\mu / 2}
\end{aligned}
$$

Theorem:

$$
\text { If } L<+\infty, 0<\tau<\frac{2}{L} \quad f\left(x_{k}\right)-f\left(x^{\star}\right) \leqslant \frac{C}{\ell+1}
$$

$$
\text { If } \mu>0, L<+\infty, 0<\tau<\frac{2}{L} \quad\left\|x_{k}-x^{\star}\right\| \leqslant \rho^{\ell}\left\|x_{0}-x^{\star}\right\|
$$

Step size matters ...

$$
\begin{aligned}
& x_{\ell+1}=x_{\ell}-\tau_{\ell} \nabla f\left(x_{\ell}\right) \\
& \tau_{\ell}^{\star}=\underset{\tau}{\operatorname{argmin}} f\left(x_{\ell}-\tau \nabla f\left(x_{\ell}\right)\right)
\end{aligned}
$$

$$
\underbrace{x_{\ell+1}}_{\substack{0}}
$$

Small τ_{ℓ}

Large τ_{ℓ}

Optimal $\tau_{\ell}=\tau_{\ell}^{\star}$

Acceleration

Momentum "heavy ball"

$$
\begin{aligned}
& x_{k+1}=x_{k}+p_{k} \\
& p_{k+1}=\mu_{k} p_{k}-\tau \begin{cases}\nabla f\left(x_{k}\right) & \text { Polyak } \\
\nabla f\left(x_{k}+\mu_{k} p_{k}\right) & \text { Nesterov }\end{cases}
\end{aligned}
$$

Yurii Nesterov

Boris
Polyak

Theorem: [Nesterov]
For $\mu_{k}=\frac{k}{k+3}$, then

$$
f\left(x_{k}\right)-f\left(x^{\star}\right)=O\left(1 / k^{2}\right)
$$

\rightarrow "optimal"
for first order schemes.

Generalization: Bregman Divergence

Bregman divergence:

$$
D_{\varphi}(x \mid y) \stackrel{\text { def. }}{=} \varphi(x)-\varphi(y)-\langle x-y, \nabla \varphi(y)\rangle
$$

Generalization: Bregman Divergence

Bregman divergence:

$$
D_{\varphi}(x \mid y) \stackrel{\text { def. }}{=} \varphi(x)-\varphi(y)-\langle x-y, \nabla \varphi(y)\rangle
$$

Locally Euclidean:

$$
D_{\varphi}(x+\eta \mid x+\varepsilon)=\frac{1}{2}\left\langle\partial^{2} \varphi(x)(\varepsilon-\eta), \varepsilon-\eta\right\rangle+o\left(\|\varepsilon-\eta\|^{2}\right)
$$

"Rule of thumb:" any reasonnable Euclidean algorithm generalizes to Bregman divergences.

Example: Mirror Descent

Bregman divergence: $\quad D_{\varphi}(x \mid y) \stackrel{\text { def. }}{=} \varphi(x)-\varphi(y)-\langle x-y, \nabla \varphi(y)\rangle$

Mirror descent: $\quad x_{k+1}=\operatorname{argmin} D_{\varphi}\left(x \mid x_{k}\right)+\tau\left\langle\nabla f\left(x_{k}\right), x\right\rangle$

$$
=(\nabla \varphi)^{-1}\left(\nabla \varphi\left(x_{k}\right)-\tau \nabla f\left(x_{k}\right)\right)
$$

Stochastic Gradient Descent

$$
\begin{aligned}
& f(x) \stackrel{\text { def. }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \\
& \nabla f(x)=\frac{1}{n} \sum_{i} \nabla f_{i}(x)
\end{aligned}
$$

$$
\begin{gathered}
f(x) \stackrel{\text { def. }}{=} \mathbb{E}_{\mathbf{z}}(f(x, \mathbf{z})) \\
\nabla f(x) \stackrel{\text { def. }}{=} \mathbb{E}_{\mathbf{z}}(\nabla F(x, \mathbf{z}))
\end{gathered}
$$

Draw $i \in\{1, \ldots, n\}$ uniformly.

$$
x_{k+1}=x_{k}-\tau_{k} \nabla f_{i}\left(x_{k}\right)
$$

Stochastic Gradient Descent

$$
\begin{aligned}
& f(x) \stackrel{\text { def. }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \\
& \nabla f(x)=\frac{1}{n} \sum_{i} \nabla f_{i}(x)
\end{aligned}
$$

$$
\begin{gathered}
f(x) \stackrel{\text { def. }}{=} \mathbb{E}_{\mathbf{z}}(f(x, \mathbf{z})) \\
\nabla f(x) \stackrel{\text { def. }}{=} \mathbb{E}_{\mathbf{z}}(\nabla F(x, \mathbf{z}))
\end{gathered}
$$

Draw $i \in\{1, \ldots, n\}$ uniformly.

$$
x_{k+1}=x_{k}-\tau_{k} \nabla f_{i}\left(x_{k}\right)
$$

$$
\begin{gathered}
\text { Draw } z \sim \mathbf{z} \\
x_{k+1}=x_{k}-\tau_{k} \nabla F(x, z)
\end{gathered}
$$

Theorem: If $\mu>0$ and $\left\|\nabla f_{i}(x)\right\| \leqslant C$, then for $\tau_{k}=\frac{1}{\mu(k+1)}$,

$$
\mathbb{E}\left(\left\|x_{k}-x^{\star}\right\|^{2}\right) \leqslant \frac{R}{k+1} \quad \text { where } \quad R \stackrel{\text { def. }}{=} \max \left(\left\|x_{0}-x^{\star}\right\|^{2}, C^{2} / \mu^{2}\right)
$$

$\tau_{k} \rightarrow 0$ to cancel gradient noise.
No benefit from strong convexity.
\longrightarrow Only useful when n is very large.

Simple Example

$$
\begin{aligned}
& \min _{x \in \mathbb{R}}(x+1)^{2}+(x-1)^{2} \\
& =f_{1}(x)=f_{2}(x)
\end{aligned} \quad x_{\ell+1} \stackrel{\text { def. }}{=}\left\{\begin{array}{l}
x_{\ell}-\frac{1}{\ell} \nabla f_{1}\left(x_{\ell}\right) \text { with proba } \frac{1}{2} \\
x_{\ell}-\frac{1}{\ell} \nabla f_{2}\left(x_{\ell}\right) \text { with proba } \frac{1}{2}
\end{array}\right.
$$

What's Next

Emilie Chouzenoux: stochastic optimization.

Fabian Pedregosa: parallel and distributed optimization.

