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• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com



Optimal Transport
Geodesics
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Optimization Deep Learning

G K Nicholls et al. 5

data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree
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FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.
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Optimization Everywhere …

Inverse problems: Observations y = Ax0 + w.

Regularized recovery: min
x

f(x)
def.
= ||y �Ax||2 +R(x).



Optimization Everywhere …

Inverse problems: Observations y = Ax0 + w.

Regularized recovery: min
x

f(x)
def.
= ||y �Ax||2 +R(x).

Supervised learning: Observations: (ai, yi)i, parametric model: g(x, a)

Classification:

Regression: yi ⇡ g(x, ai)

yi ⇡ ✓(g(x, ai))
✓(u) = (1 + eu)�1

Empirical risk minimization: min
x

f(x) = 1
n

P
i `(g(x, ai), yi)

`(y, y0) = |y � y0|2

`(y, y0) = log(1 + e�yy0
)
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min
x

f(x)

f(x)
def.
= Ez(f(x, z))f(x)

def.
= 1

n

Pn
i=1 fi(x)

finite sum / empirical integral / expectation

sampling

n ! +1



Batch Gradient Descent
xk+1 = xk � ⌧krf(xk)
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Batch Gradient Descent
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Small ⌧` Large ⌧`

x`+1 = x` � ⌧`rf(x`)

⌧?` = argmin
⌧

f(x` � ⌧rf(x`))

Optimal ⌧` = ⌧?`
⌧
?

`
rf

(x̀
)

⌧ ?
`+

1 r
f(x̀

+
1 )

x`

x`+1

rf(x`)?rf(x`+1)

Step size matters …



Nesterov

xk+1 = xk + pk
Polyak

Yurii 
Nesterov

Boris
Polyak

µ = 0

µ = 0.95
µ = 0.5

Acceleration

pk+1 = µkpk � ⌧

⇢
rf(xk)
rf(xk + µkpk)

Theorem: [Nesterov]

For µk = k
k+3 , then

f(xk)� f(x?) = O(1/k2)

Momentum
“heavy ball”

! “optimal”

for first order

schemes.



Bregman divergence:

D'(x|y)
def.
= '(x)� '(y)� hx� y, r'(y)i
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Generalization: Bregman Divergence
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Generalization: Bregman Divergence

generalizes to Bregman divergences.
“Rule of thumb:” any reasonnable Euclidean algorithm

Locally Euclidean:

D'(x+ ⌘|x+ ") =
1

2
h@2'(x)("� ⌘), "� ⌘i+ o(||"� ⌘||2)



Bregman divergence: D'(x|y)
def.
= '(x)� '(y)� hx� y, r'(y)i

xk+1 = argmin
x2X

D'(x|xk) + ⌧hrf(xk), xi

= (r')�1 (r'(xk)� ⌧rf(xk))

Mirror descent:

'(x) = ||x||2 '(x) =
P

i xi log(xi) '(x) =
P

i �
p
xi'(x) =

P
i � log(xi)

X = R2
+

0 0

Example: Mirror Descent



Stochastic Gradient Descent

f(x)
def.
= Ez(f(x, z))f(x)

def.
= 1

n

Pn
i=1 fi(x)

rf(x) = 1
n

P
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= Ez(rF (x, z))

rf(x)

rF (x, z)
z ⇠ z

rf(x)
rfi(x)

Draw i 2 {1, . . . , n} uniformly.

xk+1 = xk � ⌧krfi(xk) xk+1 = xk � ⌧krF (x, z)

Draw z ⇠ z



Stochastic Gradient Descent
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Theorem: If µ > 0 and ||rfi(x)|| 6 C, then for ⌧k = 1
µ(k+1) ,

E(||xk � x?||2) 6 R

k + 1
where R

def.
= max(||x0 � x?||2, C2/µ2)

⌧k ! 0 to cancel gradient noise.

No benefit from strong convexity.
�! Only useful when n is very large.



x`+1
def.
=

(
x` � 1

`rf1(x`) with proba 1
2

x` � 1
`rf2(x`) with proba 1

2

``

x`

= f1(x) = f2(x)

min
x2R

(x+ 1)2 + (x� 1)2

Simple Example



What’s Next

Emilie Chouzenoux: stochastic optimization.

Fabian Pedregosa: parallel and distributed optimization.


