
Differential Programming

Gabriel Peyré

ÉCOLE NORMALE
S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

Alex Gramfort Algorithms for the Lasso

Outline

2

• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com

Optimal Transport

Optimization

Yves Achdou, Paris 6
Daniel Bennequin, Paris 7

Marco Cuturi, ENSAE
Jalal Fadili, ENSICaen

Alexandre Gramfort, INRIA
Olivier Grisel (INRIA)
Olivier Guéant, Paris 1

Iordanis Kerenidis, CNRS and Paris 7
Guillaume Lecué, CNRS and ENSAE

Frédéric Magniez, CNRS and Paris 7
Edouard Oyallon, CentraleSupelec

Gabriel Peyré, CNRS and ENS
Joris Van den Bossche (INRIA)

https://mathematical-coffees.github.io
Organized by: Mérouane Debbah & Gabriel Peyré

Deep Learning

Artificial intelligence

Compressed
Sensing

Quantum computing

Mean field games Topos

Model Fitting in Data Sciences

Loss Input OutputModel Parameter

min
✓

E(✓) def.
= L(f(x, ✓), y)

Model Fitting in Data Sciences

Loss Input OutputModel Parameter

min
✓

E(✓) def.
= L(f(x, ✓), y)

Deep-learning:

x ✓1 ✓2 ✓3
✓4

y

class
probabilities

f(·, ✓)

Model Fitting in Data Sciences

Loss Input OutputModel Parameter

min
✓

E(✓) def.
= L(f(x, ✓), y)

Deep-learning:

x ✓1 ✓2 ✓3
✓4

y

class
probabilities

f(·, ✓)

Super-resolution:

✓ unknown image y observation

degradation

f(x, ·)

Model Fitting in Data Sciences

Loss Input OutputModel Parameter

min
✓

E(✓) def.
= L(f(x, ✓), y)

Medical imaging registration:

x y

di↵eomorphism

f(·, ✓)

Deep-learning:

x ✓1 ✓2 ✓3
✓4

y

class
probabilities

f(·, ✓)

Super-resolution:

✓ unknown image y observation

degradation

f(x, ·)

Gradient-based Methods
min
✓

E(✓) def.
= L(f(x, ✓), y)

Small ⌧` Large ⌧` Optimal ⌧` = ⌧?`

✓`+1 = ✓` � ⌧`rE(✓`)Gradient descent:

Gradient-based Methods
min
✓

E(✓) def.
= L(f(x, ✓), y)

Small ⌧` Large ⌧` Optimal ⌧` = ⌧?`

✓`+1 = ✓` � ⌧`rE(✓`)Gradient descent:

Many generalization:
(quasi)-Newton

Nesterov / heavy-ball

Stochastic / incremental methods

Proximal splitting (non-smooth E)
. . .

The Complexity of Gradient Computation
Setup: E : Rn ! R computable in K operations.

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

The Complexity of Gradient Computation
Setup: E : Rn ! R computable in K operations.

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Question: What is the complexity of computing rE : Rn ! Rn?

The Complexity of Gradient Computation
Setup: E : Rn ! R computable in K operations.

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Question: What is the complexity of computing rE : Rn ! Rn?

Finite di↵erences:
K(n+ 1) operations, intractable for large n.

rE(✓) ⇡ 1

"
(E(✓ + "�1)� E(✓), . . . E(✓ + "�n)� E(✓))

The Complexity of Gradient Computation
Setup: E : Rn ! R computable in K operations.

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Question: What is the complexity of computing rE : Rn ! Rn?

[Seppo Linnainmaa, 1970]

Theorem: there is an algorithm to compute rE in O(K) operations.

Finite di↵erences:
K(n+ 1) operations, intractable for large n.

rE(✓) ⇡ 1

"
(E(✓ + "�1)� E(✓), . . . E(✓ + "�n)� E(✓))

The Complexity of Gradient Computation
Setup: E : Rn ! R computable in K operations.

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Seppo Linnainmaa

This algorithm is reverse mode
automatic di↵erentiation

Question: What is the complexity of computing rE : Rn ! Rn?

[Seppo Linnainmaa, 1970]

Theorem: there is an algorithm to compute rE in O(K) operations.

Finite di↵erences:
K(n+ 1) operations, intractable for large n.

rE(✓) ⇡ 1

"
(E(✓ + "�1)� E(✓), . . . E(✓ + "�n)� E(✓))

Differentiating Composition of Functions
x0 xR xR+1x = x1 . . .g0 g1 gRx2 2 R

xr+1 = gr(xr) gr : Rnr ! Rnr+1
@gr(xr) 2 Rnr+1⇥nr

rgR(xr) = [@gr(xr)]
> 2 Rnr+1⇥1

Differentiating Composition of Functions
x0 xR xR+1x = x1 . . .g0 g1 gRx2 2 R

xr+1 = gr(xr) gr : Rnr ! Rnr+1
@gr(xr) 2 Rnr+1⇥nr

rgR(xr) = [@gr(xr)]
> 2 Rnr+1⇥1

A0A1AR�1
AR ⇥

@g(x) = @gR(xR)⇥ @gR�1(xR�1)⇥ . . .⇥ @g1(x1)⇥ @g0(x0)

⇥ ⇥ ⇥. . .1 n0

n1n2nR�1

nR

Chain
rule:

Differentiating Composition of Functions
x0 xR xR+1x = x1 . . .g0 g1 gRx2 2 R

xr+1 = gr(xr) gr : Rnr ! Rnr+1
@gr(xr) 2 Rnr+1⇥nr

rgR(xr) = [@gr(xr)]
> 2 Rnr+1⇥1

A0A1AR�1
AR ⇥

@g(x) = @gR(xR)⇥ @gR�1(xR�1)⇥ . . .⇥ @g1(x1)⇥ @g0(x0)

⇥ ⇥ ⇥. . .1 n0

n1n2nR�1

nR

Chain
rule:

@g(x) = ((. . . ((A0 ⇥A1)⇥A2) . . .⇥AR�2)⇥AR�1)⇥AR
n0n1n2

n1n2n3

nR�2nR�1nR
nR�1nR

Complexity: (if nr = 1 for r = 0, . . . , R� 1) (R� 1)n3 + n2

Forward
O(n3)

Differentiating Composition of Functions
x0 xR xR+1x = x1 . . .g0 g1 gRx2 2 R

xr+1 = gr(xr) gr : Rnr ! Rnr+1
@gr(xr) 2 Rnr+1⇥nr

rgR(xr) = [@gr(xr)]
> 2 Rnr+1⇥1

A0A1AR�1
AR ⇥

@g(x) = @gR(xR)⇥ @gR�1(xR�1)⇥ . . .⇥ @g1(x1)⇥ @g0(x0)

⇥ ⇥ ⇥. . .1 n0

n1n2nR�1

nR

Chain
rule:

@g(x) = A0 ⇥ (A1 ⇥ (A2 ⇥ . . .⇥ (AR�2 ⇥ (AR�1 ⇥AR)) . . .))
nR�1nR

nR�2nR�1

n1n2
n0n1

Complexity: Rn2

Backward
O(n2)

@g(x) = ((. . . ((A0 ⇥A1)⇥A2) . . .⇥AR�2)⇥AR�1)⇥AR
n0n1n2

n1n2n3

nR�2nR�1nR
nR�1nR

Complexity: (if nr = 1 for r = 0, . . . , R� 1) (R� 1)n3 + n2

Forward
O(n3)

Feedfordward Computational Graphs

x0 xR ExR+1

y✓R

x = x1 . . .

✓R�1

L

✓1✓0

g0 g1 gR

xr+1 = gr(xr, ✓r) E(x) = L(xR+1, y)

x2

Feedfordward Computational Graphs

x0 xR ExR+1

y✓R

x = x1 . . .

✓R�1

L

✓1✓0

g0 g1 gR

xr+1 = gr(xr, ✓r) E(x) = L(xR+1, y)

Example: deep neural network (here fully connected)

x ✓1 ✓2 ✓3
✓4

xr+1 = ⇢(Arxr + br)

xr 2 Rdr

Ar 2 Rdr+1⇥dr

br 2 Rdr+1

✓r = (Ar, br)

⇢(u)

u

x2

Feedfordward Computational Graphs

x0 xR ExR+1

y✓R

x = x1 . . .

✓R�1

L

✓1✓0

g0 g1 gR

xr+1 = gr(xr, ✓r) E(x) = L(xR+1, y)

Example: deep neural network (here fully connected)

x ✓1 ✓2 ✓3
✓4

xr+1 = ⇢(Arxr + br)

xr 2 Rdr

Ar 2 Rdr+1⇥dr

br 2 Rdr+1

✓r = (Ar, br)

⇢(u)

u

Logistic loss: L(xR+1, y)
def.
= log

X

i

exp(xR+1,i)� xR+1,iyi

rxR+1L(xR+1, y) =
exR+1

P
i e

xR+1,i
� y

(classification)

x2

Backpropagation Algorithm

x0 xR ExR+1

y✓R

x = x1 . . .

✓R�1

L

✓1✓0

g0 g1 gR

xr+1 = gr(xr, ✓r) E(x) = L(xR+1, y)

x2

Backpropagation Algorithm

x0 xR ExR+1

y✓R

x = x1 . . .

✓R�1

L

✓1✓0

g0 g1 gR

xr+1 = gr(xr, ✓r) E(x) = L(xR+1, y)

Proposition:

r✓rE = [@✓rgR(xr, ✓r)]
>(rxr+1E)

rxrE = [@xrgR(xr, ✓r)]
>(rxr+1E)8r = R, . . . , 0,

x2

Backpropagation Algorithm

x0 xR ExR+1

y✓R

x = x1 . . .

✓R�1

L

✓1✓0

g0 g1 gR

xr+1 = gr(xr, ✓r) E(x) = L(xR+1, y)

xr+1 = ⇢(Arxr + br)Example: deep neural network

8r = R, . . . , 0,

rxrE = A>
r Mr

rArE = Mrx
>
r

rbrE = Mr1

Mr
def.
= ⇢0(Arxr + br)�rxr+1E

Proposition:

r✓rE = [@✓rgR(xr, ✓r)]
>(rxr+1E)

rxrE = [@xrgR(xr, ✓r)]
>(rxr+1E)8r = R, . . . , 0,

x2

Recurrent Architectures

x0 xR ExR+1

y

x = x1 . . . Lg0 g1 gR

xr+1 = gr(xr, ✓)Shared parameters:

x2

✓

Recurrent Architectures

x0 xR ExR+1

y

x = x1 . . . Lg0 g1 gR

xr+1 = gr(xr, ✓)Shared parameters:

x2

✓

=

at✓

g xt

bt

✓

g g g. . .

a1

xt�1

Recurrent networks for natural language processing:

xTx1

a0 aT

bTb1b0

x2

Recurrent Architectures

x0 xR ExR+1

y

x = x1 . . . Lg0 g1 gR

xr+1 = gr(xr, ✓)Shared parameters:

x2

✓

for complicated computational architectures,Take home message:

you do not want to do the computation/implementation by hand.

=

at✓

g xt

bt

✓

g g g. . .

a1

xt�1

Recurrent networks for natural language processing:

xTx1

a0 aT

bTb1b0

x2

Computational Graph

Computational Graph

✓3
✓1

✓2 ✓4

✓5

g3

g4

g5

input output
return ✓R

✓r = gr(✓Parents(r))
for r = M + 1, . . . , R

function `(✓1, . . . , ✓M)

fo
rw

ar
d

computing `

Computer program, directed acyclic graph, linear ordering of nodes (✓r)r

Example
`(✓1, ✓2)

def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

`

Example
`(✓1, ✓2)

def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

Chain rules:

✓j = gj(✓i)i6j ✓k = gk(✓`)`6k✓i ✓N
gj gk.✓1

@✓j
@✓1

=
X

i2Parent(j)

@✓j
@✓i

@✓i
@✓1

@igj(✓)

“Classical” evaluation: forward.
Complexity ⇠ #inputs.

“ ”

`

Example
`(✓1, ✓2)

def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

Chain rules:

✓j = gj(✓i)i6j ✓k = gk(✓`)`6k✓i ✓N
gj gk.✓1

“ ”@✓N
@✓j

=
X

k2Child(j)

@✓N
@✓k

@✓k
@✓j

@jgk(✓)rk`(✓)
rj`(✓)

Complexity ⇠ #outputs (1 for grad).
Backward evaluation.

@✓j
@✓1

=
X

i2Parent(j)

@✓j
@✓i

@✓i
@✓1

@igj(✓)

“Classical” evaluation: forward.
Complexity ⇠ #inputs.

“ ”

`

Backward Automatic Differentiation

return ✓R

✓r = gr(✓Parents(r))
for r = M + 1, . . . , R

function `(✓1, . . . , ✓M)

fo
rw

ar
d

for r = R� 1, . . . , 1
rR` = 1

rr` =
X

s2Child(r)

@rgs(✓)rs`

b
ac
kw

ar
d

return (r1`, . . . ,rM `)

function r`(✓1, . . . , ✓M)

computing `

computing r`

`(✓1, ✓2)
def.
= ✓2e

✓1
p
✓1 + ✓2e✓1

✓1

✓2

input

✓3
def.
= e✓1

✓4
def.
= ✓2✓3

✓5
def.
= ✓1 + ✓4 ✓6

def.
=

p
✓5

output

✓7
def.
= ✓4✓6

g3

g4

g5

g7

g6

`

Softwares

