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• What is the Lasso

• Lasso with an orthogonal design

• From projected gradient to proximal gradient

• Optimality conditions and subgradients (LARS algo.)

• Coordinate descent algorithm

… with some demoswww.numerical-tours.com
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Model Fitting in Data Sciences

Loss Input OutputModel Parameter

min
✓

E(✓) def.
= L(f(x, ✓), y)

Medical imaging registration:
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Gradient-based Methods
min
✓

E(✓) def.
= L(f(x, ✓), y)

Small ⌧` Large ⌧` Optimal ⌧` = ⌧?`

✓`+1 = ✓` � ⌧`rE(✓`)Gradient descent:

Many generalization:
(quasi)-Newton

Nesterov / heavy-ball

Stochastic / incremental methods

Proximal splitting (non-smooth E)
. . .
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The Complexity of Gradient Computation
Setup: E : Rn ! R computable in K operations.

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . . )

and their derivatives cost O(1).

Seppo Linnainmaa

This algorithm is reverse mode
automatic di↵erentiation

Question: What is the complexity of computing rE : Rn ! Rn?
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xr+1 = gr(xr, ✓)Shared parameters:
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for complicated computational architectures,Take home message:

you do not want to do the computation/implementation by hand.
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Computational Graph

✓3
✓1

✓2 ✓4

✓5

g3

g4

g5

input output
return ✓R

✓r = gr(✓Parents(r))
for r = M + 1, . . . , R

function `(✓1, . . . , ✓M )

fo
rw

ar
d

computing `

Computer program, directed acyclic graph, linear ordering of nodes (✓r)r
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Backward Automatic Differentiation
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