Differential Programming

Gabriel Peyré

Mathematica offee

Huawei-FSMP joint seminars athematical-coffees.github.io

Organized by: Mérouane Debbah & Gabriel Peyré

Optimal Transport

Yves Achdou, Paris 6 Daniel Bennequin, Paris 7 Marco Cuturi, ENSAE Jalal Fadili, ENSICaen

Optimization Mean field games

nces

Paris

Alexandre Gramfort, INRIA Olivier Grisel (INRIA) Olivier Guéant, Paris 1 Iordanis Kerenidis, CNRS and Paris 7 Guillaume Lecué, CNRS and ENSAE

Frédéric Magniez, CNRS and Paris 7 Edouard Oyallon, CentraleSupelec Gabriel Peyré, CNRS and ENS Joris Van den Bossche (INRIA)

Super-resolution:

 $\frac{f(x,\cdot)}{\text{degradation}}$

 θ unknown image

Super-resolution:

Gradient-based Methods

 $\min_{\theta} \mathcal{E}(\theta) \stackrel{\text{def.}}{=} L(f(\boldsymbol{x}, \theta), \boldsymbol{y})$ Gradient descent: $\theta_{\ell+1} = \theta_{\ell} - \tau_{\ell} \nabla \mathcal{E}(\theta_{\ell})$

Gradient-based Methods

Setup: $\mathcal{E} : \mathbb{R}^n \to \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
  X = []
  X.append(Z)
  for r in arange(0,R):
      X.append( rhoF( A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
  return X
```

Hypothesis: elementary operations $(a \times b, \log(a), \sqrt{a} \dots)$ and their derivatives cost O(1).

Setup: $\mathcal{E} : \mathbb{R}^n \to \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
  X = []
  X.append(Z)
  for r in arange(0,R):
      X.append( rhoF( A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
  return X
```

Hypothesis: elementary operations $(a \times b, \log(a), \sqrt{a} \dots)$ and their derivatives cost O(1).

Question: What is the complexity of computing $\nabla \mathcal{E} : \mathbb{R}^n \to \mathbb{R}^n$?

Setup: $\mathcal{E} : \mathbb{R}^n \to \mathbb{R}$ computable in K operations.

def ForwardNN(A,b,Z):
 X = []
 X.append(Z)
 for r in arange(0,R):
 X.append(rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]])))
 return X

Hypothesis: elementary operations $(a \times b, \log(a), \sqrt{a} \dots)$ and their derivatives cost O(1).

Question: What is the complexity of computing $\nabla \mathcal{E} : \mathbb{R}^n \to \mathbb{R}^n$?

Finite differences:

$$\nabla \mathcal{E}(\theta) \approx \frac{1}{\varepsilon} (\mathcal{E}(\theta + \varepsilon \delta_1) - \mathcal{E}(\theta), \dots \mathcal{E}(\theta + \varepsilon \delta_n) - \mathcal{E}(\theta))$$

 $K(n+1)$ operations, intractable for large n .

Setup: $\mathcal{E} : \mathbb{R}^n \to \mathbb{R}$ computable in K operations.

def ForwardNN(A,b,Z):
 X = []
 X.append(Z)
 for r in arange(0,R):
 X.append(rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]])))
 return X

Hypothesis: elementary operations $(a \times b, \log(a), \sqrt{a} \dots)$ and their derivatives cost O(1).

Question: What is the complexity of computing $\nabla \mathcal{E} : \mathbb{R}^n \to \mathbb{R}^n$?

Finite differences:

$$\nabla \mathcal{E}(\theta) \approx \frac{1}{\varepsilon} (\mathcal{E}(\theta + \varepsilon \delta_1) - \mathcal{E}(\theta), \dots \mathcal{E}(\theta + \varepsilon \delta_n) - \mathcal{E}(\theta))$$

 $K(n+1)$ operations, intractable for large n .

Theorem: there is an algorithm to compute $\nabla \mathcal{E}$ in O(K) operations. [Seppo Linnainmaa, 1970]

Setup: $\mathcal{E} : \mathbb{R}^n \to \mathbb{R}$ computable in K operations.

def ForwardNN(A,b,Z):
 X = []
 X.append(Z)
 for r in arange(0,R):
 X.append(rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]])))
 return X

Hypothesis: elementary operations $(a \times b, \log(a), \sqrt{a} \dots)$ and their derivatives cost O(1).

Question: What is the complexity of computing $\nabla \mathcal{E} : \mathbb{R}^n \to \mathbb{R}^n$?

Finite differences:

$$\nabla \mathcal{E}(\theta) \approx \frac{1}{\varepsilon} (\mathcal{E}(\theta + \varepsilon \delta_1) - \mathcal{E}(\theta), \dots \mathcal{E}(\theta + \varepsilon \delta_n) - \mathcal{E}(\theta))$$

 $K(n+1)$ operations, intractable for large n .

Theorem: there is an algorithm to compute $\nabla \mathcal{E}$ in O(K) operations. [Seppo Linnainmaa, 1970]

This algorithm is reverse mode automatic differentiation

```
def BackwardNN(A,b,X):
gx = lossG(X[R],Y) # initialize the gradient
for r in arange(R-1,-1,-1):
  M = rhoG( A[r].dot(X[r]) + tile(b[r],[1,n]) ) * gx
  gx = A[r].transpose().dot(M)
  gA[r] = M.dot(X[r].transpose())
  gb[r] = MakeCol(M.sum(axis=1))
return [gA,gb]
```


Complexity: (if $n_r = 1$ for r = 0, ..., R - 1) $(R - 1)n^3 + n^2$

Feedfordward Computational Graphs

Feedfordward Computational Graphs

Example: deep neural network (here fully connected)

Feedfordward Computational Graphs

Example: deep neural network (here fully connected)

Logistic loss: (classification)

$$L(x_{R+1}, y) \stackrel{\text{def.}}{=} \log \sum_{i} \exp(x_{R+1,i}) - x_{R+1,i} y_i$$
$$\nabla_{x_{R+1}} L(x_{R+1}, y) = \frac{e^{x_{R+1}}}{\sum_{i} e^{x_{R+1,i}}} - y$$

Backpropagation Algorithm

Backpropagation Algorithm

Proposition: $\forall r = R, \dots, 0, \quad \nabla_{x_r} \mathcal{E} = [\partial_{x_r} g_R(x_r, \theta_r)]^\top (\nabla_{x_{r+1}} \mathcal{E})$ $\nabla_{\theta_r} \mathcal{E} = [\partial_{\theta_r} g_R(x_r, \theta_r)]^\top (\nabla_{x_{r+1}} \mathcal{E})$

Backpropagation Algorithm

Proposition:
$$\forall r = R, \dots, 0, \quad \nabla_{x_r} \mathcal{E} = [\partial_{x_r} g_R(x_r, \theta_r)]^\top (\nabla_{x_{r+1}} \mathcal{E})$$

$$\nabla_{\theta_r} \mathcal{E} = [\partial_{\theta_r} g_R(x_r, \theta_r)]^\top (\nabla_{x_{r+1}} \mathcal{E})$$

Example: deep neural network $x_{r+1} = \rho(A_r x_r + b_r)$ $\nabla_{x_r} \mathcal{E} = A_r^\top M_r$ $\forall r = R, \dots, 0, \qquad \nabla_{A_r} \mathcal{E} = M_r x_r^\top \qquad M_r \stackrel{\text{def.}}{=} \rho'(A_r x_r + b_r) \odot \nabla_{x_{r+1}} \mathcal{E}$ $\nabla_{b_r} \mathcal{E} = M_r \mathbb{1}$

```
def ForwardNN(A,b,Z):
  X = []
  X.append(Z)
  for r in arange(0,R):
      X.append( rhoF( A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
  return X
```

```
def BackwardNN(A,b,X):
gx = lossG(X[R],Y) # initialize the gradient
for r in arange(R-1,-1,-1):
  M = rhoG( A[r].dot(X[r]) + tile(b[r],[1,n]) ) * gx
  gx = A[r].transpose().dot(M)
  gA[r] = M.dot(X[r].transpose())
  gb[r] = MakeCol(M.sum(axis=1))
return [gA,gb]
```

Recurrent Architectures

Recurrent Architectures

Recurrent networks for natural language processing:

Recurrent Architectures

Recurrent networks for natural language processing:

Take home message: for complicated computational architectures, you do not want to do the computation/implementation by hand.

Computational Graph

Computational Graph

Computer program \Leftrightarrow directed acyclic graph \Leftrightarrow linear ordering of nodes $(\theta_r)_r$

Example

Example

Example

Backward Automatic Differentiation

$$\ell(\theta_1, \theta_2) \stackrel{\text{\tiny def.}}{=} \theta_2 e^{\theta_1} \sqrt{\theta_1 + \theta_2 e^{\theta_1}}$$

computing ℓ

computing $\nabla \ell$

$$\begin{array}{c|c} \mbox{function } \ell(\theta_1, \dots, \theta_M) \\ \mbox{for } r = M + 1, \dots, R \\ \mbox{ } \theta_r = g_r(\theta_{\operatorname{Parents}(r)}) \\ \mbox{return } \theta_R \end{array} \end{array}$$

$$\begin{array}{l} \mbox{function } \nabla \ell(\theta_1, \dots, \theta_M) \\ \nabla_R \ell = 1 \\ \mbox{for } r = R - 1, \dots, 1 \\ \\ \\ \\ \nabla_r \ell = \sum_{s \in {\rm Child}(r)} \partial_r g_s(\theta) \nabla_s \ell \\ \\ \mbox{return } (\nabla_1 \ell, \dots, \nabla_M \ell) \end{array}$$

Softwares

