Differential Programming

Gabriel Peyré

www. numerical-tours.com

Yves Achdou, Paris 6 Daniel Bennequin, Paris 7 Marco Cuturi, ENSAE Jalal Fadili, ENSICaen

Organized by: Mérouane Debbah \& Gabriel Peyré

Frédéric Magniez, CNRS and Paris 7
Edouard Oyallon, CentraleSupelec
Gabriel Peyré, CNRS and ENS Joris Van den Bossche (INRIA)

Iordanis Kerenidis, CNRS and Paris 7 Guillaume Lecué, CNRS and ENSAE

Alexandre Gramfort, INRIA Olivier Grisel (INRIA) Olivier Guéant, Paris 1

Model Fitting in Data Sciences

Model Fitting in Data Sciences

Model Fitting in Data Sciences

Super-resolution:

Model Fitting in Data Sciences

Super-resolution:

y observation

Medical imaging registration:

Gradient-based Methods

$$
\min _{\theta} \mathcal{E}(\theta) \stackrel{\text { def. }}{=} L(f(x, \theta), y)
$$

Gradient descent: $\quad \theta_{\ell+1}=\theta_{\ell}-\tau_{\ell} \nabla \mathcal{E}\left(\theta_{\ell}\right)$

Small τ_{ℓ}

Large τ_{ℓ}

Optimal $\tau_{\ell}=\tau_{\ell}^{\star}$

Gradient-based Methods

$$
\min _{\theta} \mathcal{E}(\theta) \stackrel{\text { def. }}{=} L(f(x, \theta), y)
$$

Gradient descent: $\quad \theta_{\ell+1}=\theta_{\ell}-\tau_{\ell} \nabla \mathcal{E}\left(\theta_{\ell}\right)$

Small τ_{ℓ}

Large τ_{ℓ}

Optimal $\tau_{\ell}=\tau_{\ell}^{\star}$

The Complexity of Gradient Computation

Setup: $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
    X = []
    X.append(Z)
    for r in arange(0,R)
        X.append( rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
    return X
```

Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$
and their derivatives cost $O(1)$.

The Complexity of Gradient Computation

Setup: $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
    X = []
    X.append(Z)
    for r in arange(0,R)
        X.append( rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
    return X
```

Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$ and their derivatives cost $O(1)$.

Question: What is the complexity of computing $\nabla \mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?

The Complexity of Gradient Computation

Setup: $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
    X = []
    X.append(Z)
    for r in arange(0,R)
        X.append( rhoF(A[r].dot(X[r]) + tile(b[r],[1,z.shape[1]]) ) )
    return X
```

Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$ and their derivatives cost $O(1)$.

Question: What is the complexity of computing $\nabla \mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?
Finite differences: $\quad \nabla \mathcal{E}(\theta) \approx \frac{1}{\varepsilon}\left(\mathcal{E}\left(\theta+\varepsilon \delta_{1}\right)-\mathcal{E}(\theta), \ldots \mathcal{E}\left(\theta+\varepsilon \delta_{n}\right)-\mathcal{E}(\theta)\right)$ $K(n+1)$ operations, intractable for large n.

The Complexity of Gradient Computation

Setup: $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
    X = []
    X.append(Z)
    for r in arange(0,R)
        X.append( rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
    return X
```

Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$ and their derivatives cost $O(1)$.

Question: What is the complexity of computing $\nabla \mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?
Finite differences: $\quad \nabla \mathcal{E}(\theta) \approx \frac{1}{\varepsilon}\left(\mathcal{E}\left(\theta+\varepsilon \delta_{1}\right)-\mathcal{E}(\theta), \ldots \mathcal{E}\left(\theta+\varepsilon \delta_{n}\right)-\mathcal{E}(\theta)\right)$ $K(n+1)$ operations, intractable for large n.

Theorem: there is an algorithm to compute $\nabla \mathcal{E}$ in $O(K)$ operations. [Seppo Linnainmaa, 1970]

The Complexity of Gradient Computation

Setup: $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations.

```
def ForwardNN(A,b,Z):
    X = []
    X.append(Z)
    for r in arange(0,R)
        X.append( rhoF(A[r].dot(X[r]) + tile(b[r],[1,Z.shape[1]]) ) )
    return X
```

Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$
and their derivatives cost $O(1)$.
Question: What is the complexity of computing $\nabla \mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?
Finite differences: $\quad \nabla \mathcal{E}(\theta) \approx \frac{1}{\varepsilon}\left(\mathcal{E}\left(\theta+\varepsilon \delta_{1}\right)-\mathcal{E}(\theta), \ldots \mathcal{E}\left(\theta+\varepsilon \delta_{n}\right)-\mathcal{E}(\theta)\right)$
$K(n+1)$ operations, intractable for large n.
Theorem: there is an algorithm to compute $\nabla \mathcal{E}$ in $O(K)$ operations. [Seppo Linnainmaa, 1970]

This algorithm is reverse mode automatic differentiation

```
def BackwardNN(A,b,X):
    gx = lossG(X[R],Y) # initialize the gradient
    for r in arange(R-1,-1,-1):
        M = rhoG( A[r].dot(X[r]) + tile(b[r],[1,n]) ) * gx
        gx = A[r].transpose().dot(M)
        gA[r] = M.dot(X[r].transpose())
        gb[r] = MakeCol(M.sum(axis=1))
    return [gA,gb]
```


Differentiating Composition of Functions

$$
x_{r+1}=g_{r}\left(x_{r}\right) \quad g_{r}: \mathbb{R}^{n_{r}} \rightarrow \mathbb{R}^{n_{r+1}} \quad \begin{aligned}
& \\
& \nabla g_{R}\left(x_{r}\right)=\left[\partial g_{r}\left(x_{r}\right)\right]^{\top} \in \mathbb{R}^{n_{r+1} \times 1} \bigwedge
\end{aligned}
$$

Differentiating Composition of Functions

$x_{r+1}=g_{r}\left(x_{r}\right) \quad g_{r}: \mathbb{R}^{n_{r}} \rightarrow \mathbb{R}^{n_{r+1}}$
$\partial g_{r}\left(x_{r}\right) \in \mathbb{R}^{n_{r+1} \times n_{r}}$
$\nabla g_{R}\left(x_{r}\right)=\left[\partial g_{r}\left(x_{r}\right)\right]^{\top} \in \mathbb{R}^{n_{r+1} \times 1} \quad \bigwedge$

$$
\partial g(x)=\partial g_{R}\left(x_{R}\right) \times \partial g_{R-1}\left(x_{R-1}\right) \times \ldots \times \partial g_{1}\left(x_{1}\right) \times \partial g_{0}\left(x_{0}\right)
$$

Chain rule:

Differentiating Composition of Functions

$x_{r+1}=g_{r}\left(x_{r}\right) \quad g_{r}: \mathbb{R}^{n_{r}} \rightarrow \mathbb{R}^{n_{r+1}}$
$\partial g_{r}\left(x_{r}\right) \in \mathbb{R}^{n_{r+1} \times n_{r}}$
$\nabla g_{R}\left(x_{r}\right)=\left[\partial g_{r}\left(x_{r}\right)\right]^{\top} \in \mathbb{R}^{n_{r+1} \times 1} \quad \leqq$

$$
\partial g(x)=\partial g_{R}\left(x_{R}\right) \times \partial g_{R-1}\left(x_{R-1}\right) \times \ldots \times \partial g_{1}\left(x_{1}\right) \times \partial g_{0}\left(x_{0}\right)
$$

Chain rule:

Forward $O\left(n^{3}\right)$

$$
\begin{aligned}
& \partial g(x)=\left(\left(\ldots\left(\frac{\left(A_{0} \times A_{1}\right)}{n_{0} n_{1} n_{2}} \frac{A_{1}}{n_{1} n_{2} n_{3}}\right) \ldots \times \frac{\left.A_{R-2}\right) \times A_{R-1}}{n_{R-2} n_{R-1} n_{R}}\right) \times A_{R}\right. \\
& n_{R-1} n_{R} \\
& \text { Complexity: }\left(\text { if } n_{r}=1 \text { for } r=0, \ldots, R-1\right)(R-1) n^{3}+n^{2}
\end{aligned}
$$

Differentiating Composition of Functions

$x_{r+1}=g_{r}\left(x_{r}\right) \quad g_{r}: \mathbb{R}^{n_{r}} \rightarrow \mathbb{R}^{n_{r+1}}$
$\partial g_{r}\left(x_{r}\right) \in \mathbb{R}^{n_{r+1} \times n_{r}}$
$\nabla g_{R}\left(x_{r}\right)=\left[\partial g_{r}\left(x_{r}\right)\right]^{\top} \in \mathbb{R}^{n_{r+1} \times 1} \quad \leqq$

$$
\partial g(x)=\partial g_{R}\left(x_{R}\right) \times \partial g_{R-1}\left(x_{R-1}\right) \times \ldots \times \partial g_{1}\left(x_{1}\right) \times \partial g_{0}\left(x_{0}\right)
$$

Chain rule:

$$
1 \xlongequal[n_{R}]{\stackrel{A_{R}}{\rightleftharpoons}} \times
$$

$$
\text { Complexity: (if } \left.n_{r}=1 \text { for } r=0, \ldots, R-1\right)(R-1) n^{3}+n^{2}
$$

Backward $O\left(n^{2}\right)$

$$
\partial g(x)=\frac{A_{0} \times \frac{\left(A_{1} \times\left(A_{2}\right.\right.}{n_{1} n_{2}}}{n_{0} n_{1}} \times \ldots \times\left(\frac{\left.\left.\left.A_{R-2} \times \frac{\left(A_{R-1} \times A_{R}\right)}{n_{R-1} n_{R}}\right) \ldots\right)\right)}{n_{R-2} n_{R-1}}\right.
$$

Complexity: $R n^{2}$

Feedfordward Computational Graphs

Feedfordward Computational Graphs

Example: deep neural network (here fully connected)

$\theta_{r}=\left(A_{r}, b_{r}\right)$
$x_{r} \in \mathbb{R}^{d_{r}}$
$A_{r} \in \mathbb{R}^{d_{r+1} \times d_{r}}$
$b_{r} \in \mathbb{R}^{d_{r+1}}$

Feedfordward Computational Graphs

Example: deep neural network (here fully connected)

$\theta_{r}=\left(A_{r}, b_{r}\right)$ $x_{r} \in \mathbb{R}^{d_{r}}$
$A_{r} \in \mathbb{R}^{d_{r+1} \times d_{r}}$
$b_{r} \in \mathbb{R}^{d_{r+1}}$
$\underset{\text { Logistic loss: }}{\text { Los. }} \quad L\left(x_{R+1}, y\right) \stackrel{\text { def. }}{=} \log \sum_{i} \exp \left(x_{R+1, i}\right)-x_{R+1, i} y_{i}$ (classification)

$$
\nabla_{x_{R+1}} L\left(x_{R+1}, y\right)=\frac{e^{x_{R+1}}}{\sum_{i} e^{x_{R+1, i}}}-y
$$

Backpropagation Algorithm

Backpropagation Algorithm

Proposition: $\quad \forall r=R, \ldots, 0, \quad \nabla_{x_{r}} \mathcal{E}=\left[\partial_{x_{r}} g_{R}\left(x_{r}, \theta_{r}\right)\right]^{\top}\left(\nabla_{x_{r+1}} \mathcal{E}\right)$

$$
\nabla_{\theta_{r}} \mathcal{E}=\left[\partial_{\theta_{r}} g_{R}\left(x_{r}, \theta_{r}\right)\right]^{\top}\left(\nabla_{x_{r+1}} \mathcal{E}\right)
$$

Backpropagation Algorithm

Proposition: $\quad \forall r=R, \ldots, 0, \quad \nabla_{x_{r}} \mathcal{E}=\left[\partial_{x_{r}} g_{R}\left(x_{r}, \theta_{r}\right)\right]^{\top}\left(\nabla_{x_{r+1}} \mathcal{E}\right)$

$$
\nabla_{\theta_{r}} \mathcal{E}=\left[\partial_{\theta_{r}} g_{R}\left(x_{r}, \theta_{r}\right)\right]^{\top}\left(\nabla_{x_{r+1}} \mathcal{E}\right)
$$

Example: deep neural network $x_{r+1}=\rho\left(A_{r} x_{r}+b_{r}\right)$

$$
\begin{aligned}
\nabla_{x_{r}} \mathcal{E} & =A_{r}^{\top} M_{r} \\
\forall r=R, \ldots, 0, & \nabla_{A_{r}} \mathcal{E}
\end{aligned}=M_{r} x_{r}^{\top} \quad M_{r} \stackrel{\text { def. }}{=} \rho^{\prime}\left(A_{r} x_{r}+b_{r}\right) \odot \nabla_{x_{r+1}} \mathcal{E}
$$

X.append(Z)
for r in arange ($0, R$):
X.append($\operatorname{rhoF}(A[r] . \operatorname{dot}(X[r])+\operatorname{tile}(b[r],[1, z . s h a p e[1]])$)
return X
def $\operatorname{BackwardNN}(\mathrm{A}, \mathrm{b}, \mathrm{X})$:
gx = lossG(X[R],Y) \# initialize the gradient
for r in arange $(R-1,-1,-1)$:
$\mathrm{M}=\operatorname{rhoG}(\mathrm{A}[\mathrm{r}] . \operatorname{dot}(\mathrm{X}[\mathrm{r}])+\operatorname{tile}(\mathrm{b}[\mathrm{r}],[1, \mathrm{n}])$) * gx $\mathrm{gx}=\mathrm{A}[\mathrm{r}] . \operatorname{tr}$ anspose().dot(M)
$\operatorname{gA}[r]=$ M.dot(X[r].transpose())
gb[r] $=$ MakeCol(M.sum(axis=1))
return [gA,gb]

Recurrent Architectures

Recurrent Architectures

Recurrent networks for natural language processing:

Recurrent Architectures

Recurrent networks for natural language processing:

Take home message: for complicated computational architectures, you do not want to do the computation/implementation by hand.

Computational Graph

Computational Graph

Computer program \Leftrightarrow directed acyclic graph \Leftrightarrow linear ordering of nodes $\left(\theta_{r}\right)_{r}$

Example

Example

Chain rules:
${ }^{66} \frac{\partial \theta_{j}}{\partial \theta_{1}}=\sum_{i \in \operatorname{Parent}(j)} \frac{\partial \theta_{j}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial \theta_{1}}{ }^{99}$
"Classical" evaluation: forward.
Complexity \sim \#inputs.

Example

Chain rules:
${ }^{66} \frac{\partial \theta_{j}}{\partial \theta_{1}}=\sum_{i \in \operatorname{Parent}(j)} \frac{\partial \theta_{j}}{\partial \theta_{i}} \frac{\partial \theta_{i}{ }^{99}}{\partial \theta_{1}}{ }_{\partial_{i} g_{j}(\theta)}$
"Classical" evaluation: forward. Complexity \sim \#inputs.

$$
\begin{aligned}
& { }^{66} \frac{\partial \theta_{N}}{\partial \theta_{j}}=\sum_{k \in \operatorname{Child}(j)} \frac{\partial \theta_{N}}{\partial \theta_{k}} \frac{\partial \theta_{k}{ }^{99}}{\partial \theta_{j}} \\
& \nabla_{j} \ell(\theta) \quad \nabla_{k} \ell(\theta) \quad{ }_{\partial_{j}} g_{k}(\theta)
\end{aligned}
$$

Backward evaluation.
Complexity \sim \#outputs (1 for grad).

Backward Automatic Differentiation

$$
\ell\left(\theta_{1}, \theta_{2}\right) \stackrel{\text { def. }}{=} \theta_{2} e^{\theta_{1}} \sqrt{\theta_{1}+\theta_{2} e^{\theta_{1}}}
$$

computing ℓ

computing $\nabla \ell$
function $\ell\left(\theta_{1}, \ldots, \theta_{M}\right)$
for $r=M+1, \ldots, R$
$\mid \theta_{r}=g_{r}\left(\theta_{\text {Parents }(r)}\right)$
return θ_{R}
function $\nabla \ell\left(\theta_{1}, \ldots, \theta_{M}\right)$

$$
\begin{aligned}
& \nabla_{R} \ell=1 \\
& \text { for } r=R-1, \ldots, 1
\end{aligned}
$$

$$
\begin{aligned}
& \quad \nabla_{r} \ell=\sum_{s \in \operatorname{Child}(r)} \partial_{r} g_{s}(\theta) \nabla_{s} \ell \\
& \text { return }\left(\nabla_{1} \ell, \ldots, \nabla_{M} \ell\right)
\end{aligned}
$$

Softwares

PYTÖRCH

TensorFlow

