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Notations
H is a finite-dimensional Hilbert space (typically the real vector space RN ) endo-
wed with the inner product h., .i and associated norm k.k.
I is the identity operator on H.
The operator spectral norm of A : H1 ! H2 is denoted

������A
������ = sup

x2H1

kAxk
kxk .

k.k
p

, p � 1 is the `

p

-norm with the usual adaptation for the case p = +1.
B⇢

p

is the (convex compact) `

p

-ball, p � 1, centered at its origin 0 and of radius
⇢ > 0. x + B⇢

p

is the same ball centered at x.
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Definition (Convex set) A closed set C ✓ H is said to be convex if :

8x, y 2 C, 0  ⇢  1) ⇢x + (1� ⇢)y 2 C.

Definition (Cone) A cone C is a set such that the ”open” half line {tx : t > 0} is
entirely contained in C whenever x 2 C. In the usual geometrical representation, a
cone has an apex ; here at 0.

Property (Convex cone) A cone C is convex () C + C ⇢ C.

Proposition (Convexity-preserving operations)
Convexity is stable under intersection : if Ci, i 2 I are convex) \i2ICi is convex.
Convexity is stable under Cartesian product, and the converse is true : Ci, i 2 I
are convex () C1 ⇥ · · ·⇥ C|I| is convex.
Convexity is stable under affine mappings : the image of a convex set under an
affine map A is also convex (e.g. reflection, Minkowski sum).
If a set is convex, so are its interior and its closure.
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Definition (Affine hull) An affine combination of x1 · · ·xn 2 H is an element
Pn

i=1 aixi,Pn
i=1 ai = 1. All such affine combinations form an affine manifold ofH. The affine hull

of a nonempty set C ⇢ H is the smallest affine manifolds containing C, or equivalently,

a↵(C) =

(
x 2 H

��� 8i, yi 2 C, x =
nX

i=1

aiyi and
nX

i=1

ai = 1

)
.

The interior of a convex set is empty unless it is full dimensional.
Let C be a sheet of paper. Its interior is empty in the surrounding R3 space, . . .

but not in the space R2 of the table it is lying on.
The concept of relative interior alleviates this ambiguity by defining the interior
for a different topology : the one that equips its affine hull (which becomes a
topological space in its own).
In convex analysis and optimization, the topology of the whole space is of mode-
rate interest, those relative to the affine hull are much richer.
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Definition (Relative interior)
The relative interior ri(C) of a convex set C ⇢ H is the interior of C for the topology
relative to its affine full, i.e. x 2 ri(C) if and only if :

x 2 a↵(C) and 9⇢ > 0 s.t. (a↵(C)) \ B⇢
H(x) ⇢ C .

C a↵(C) dim(C) ri(C)
{x} {x} 0 {x}

[x, x

0] affine line generated by x and x

0 1 (x, x

0)
Simplex SN in RN affine manifold of equation

PN
i=1 xi = 1 N � 1 {x 2 SN : x[i] > 0}

B⇢
2 ⇢ RN RN

N int(B⇢
2)

Proposition (Properties of the relative interior)
ri(C) ⇢ C, is convex and dim(ri(C)) = dim(C).
Let x 2 cl(C) and x

0 2 ri(C), then (x, x

0] 2 ri(C).
Consequently, the convex sets C, ri(C) and cl(C) have the same affine hull, the
same relative interior and the same closure.
The relative topology fits well with convexity preserving operations. Let Ci, i =
1, · · · , n be convex sets.

If \iri(Ci) 6= ; ) \iri(Ci) = ri(\iCi).
ri(C1)⇥ · · ·⇥ ri(Cn) = ri(C1 ⇥ · · ·⇥ Cn).
Let A be an affine map, then ri(AC) = A(ri(C)).

0 2 ri(C1 � C2) () ri(C1) \ ri(C2) 6= ;.
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Definition (Domain of a function) The domain dom(F ) of a function F : H ! R
is dom(F ) = {x 2 H : F (x) < +1}.

Definition (Proper function) A function is proper if dom(F ) 6= ;.

Definition (Epigraph, level set, sublevel sets) The epigraph epi(F ) of a function
F : H ! R is epi(F ) = {(x, t) 2 H ⇥ R : F (x)  t}. The level set of F at t0 is
lev

t0(F ) = {x 2 H : F (x) = t0}. The sublevel sets at t0 is [tt0 levt

(F ).

Definition (Coercivity) F is (weakly- or 0-)coercive if limkxk!1 F (x) = +1.
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Definition (Convex function) A function F : H ! R [ {+1} is convex if

8x, y 2 H, 0 < ⇢ < 1, F (⇢x+ (1� ⇢)y)  ⇢F (x) + (1� ⇢)F (y) .

It is strictly convex if the inequality is strict for x 6= y.

Definition (Lower semicontinuity) We say that a real-valued function f is lower

semi-continuous (lsc) if lim inf
x!x0 f(x) � f(x0). It is lsc on C ⇢ H if it is lsc at

each of its points.

Proposition Let F : H ! R[ {+1}. F is lsc () its epigraph is closed () its

sublevel sets at t are closed for all t 2 R.

Lower semi-continuity is weaker than continuity, and plays an important role for exis-

tence of solutions in minimization problems over a compact set (by closedness of its

epigraph).

Notation �0(H) is the class of all proper lsc convex functions from H to R[ {+1}.
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Proposition (Properties of closed convex functions)
A function F 2 �0(H) is (strictly) convex if and only if its epigraph is a (strictly)
convex set.
It is strongly convex with modulus c if F � c/2 k·k2 is convex.
Any F 2 �0(H) is minorized by some affine function : F (y) � F (x)+hu, y � xi , 8x 2
ri(dom(F )), 8y 2 H.
Convexity and closedness of functions in �0(H) are preserved under :

positive combinations ;
pointwise supremum ;
(Legendre-Fenchel) conjugacy (see hereafter) ;
pre-composition by an affine mapping A such that Im(A) \ dom(F ) 6= ; ;
post-composition G � F with an increasing convex function G 2 �0(R) if
9x 2 H s.t. F (x) 2 dom(G) and G(+1) := +1.
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Theorem (Continuity properties) Let F a convex function on RN .
If C is a compact subset of ri(dom(F )), then F is continuous on the relative
interior of its domain. It is moreover locally Lipschitz-continuous on this relative
interior.
If F is (uniformly) Lipschitz on a nonempty convex subset C, it has a convex
Lipschitz extension (with the same Lipschitz constant) on the whole space, that
coincides with it on C.
Convex functions converging pointwise to some function F do converge uniformly
on each compact subset of ri(dom(F )), and F is convex.

Theorem (First-order properties) Let F a convex function on RN .
F is differentiable almost everywhere, i.e. the subset of int(dom(F )) where F is
not differentiable is of zero Lebesgue measure.
F differentiable on an open convex set O () F 2 C

1,1
(O).

Theorem (Second-order properties [A.D. Alexandrov]) Let F a convex function.
For all x 2 int(dom(F )) except on a set of zero Lebesgue measure, F is differen-
tiable at x and there exists a symmetric positive semi-definite operator D

2
F (x) such

that for all d 2 RN

F (x + d) = F (x) + hrF (x), di +

1

2

⌦
D

2
F (x)d, d

↵
+ o(kdk2) .
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Definition (Indicator function) Let C a nonempty subset of H. The indicator func-
tion ıC of C is

ıC(x) =

8
<

:
0, if x 2 C ,

+1, otherwise.

dom(ıC) = C and epi(ıC) = C ⇥ R+.

Definition (Support function) Let C a nonempty subset of H. Its support function
is �C(u) = sup{hu, xi : x 2 C}, 8u 2 H ; i.e. the supremum of the linear functions
minorizing it.

Proposition �C is a closed convex function for any nonempty subset C. It is sub-
linear ; i.e. positively homogeneous and subadditive, and is finite everywhere if C is
bounded. Moreover, if C1 and C2 are nonempty closed convex sets, then C1 ⇢ C2 ()
�C1(u)  �C2(u), 8u 2 H.

Lemma Any `p-norm is the support function of the unit ball B1
q of the dual norm `q,

where 1/p + 1/q = 1.



SSNAO’17-

Indicator and support functions

16

0

epi(�C)

0

epi(k·k1)

R N R
2

C

�C(u)
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Definition (Conjugate) Let F : H! R[{+1} having a minorizing affine function.
The conjugate or Legendre-Fenchel transform of F is the function F

⇤ defined by

F

⇤
(u) = sup

x2dom(F )

hu, xi � F (x) .

We obviously observe that F

⇤
(u) + F (x) � hu, xi for all (x, u) 2 dom(F ) ⇥ H

(Fenchel inequality).

�F ⇤(u)

u

2 @

F

(x)

F (x)

epi(F )

D

(x)
= hu,

y

� x

i+
F

(x)

x
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Theorem F

⇤ is a closed convex function. We also have F 2 �0(H) () the bi-conjugate
F

⇤⇤
= F .

Theorem (Calculus rules)
(F (x) + t)

⇤
(u) = F

⇤
(u)� t.

(F (tx))

⇤
(u) = tF

⇤
(u/t), t > 0.

(F �A)

⇤
= F

⇤ � �
A

�1
�⇤ if A is a linear invertible operator.

(F (x� x0))
⇤
(u) = F

⇤
(u) + hu, x0i.

F1  F2 ) F

⇤
1 � F

⇤
2 .

Separability : (
Pn

i=1 Fi(xi))
⇤

=

Pn
i=1 F

⇤
i (ui), where (x1, · · · , xn) 2 H1 ⇥ · · ·⇥Hn.

Pre-composition with an affine operator : let F 2 �0(H) and A := A0 ·+b, an affine operator.
Assume that A(H) \ ri(dom(F )) 6= ;. Then for avery u 2 dom((F � A0)

⇤
), the following

minimization problem has a solution :

(F �A)

⇤
(u) = inf

v
{F ⇤

(v)� hv, bi : A

⇤
0v = u} .

Conjugate of a sum : assume F1, F2 2 �0(H) and their relative interiors of their domains have
a nonempty intersection. Then

(F1 + F2)
⇤

= F

⇤
1

+_ F

⇤
2 .



SSNAO’17-

Conjugacy: differentiability

19

Theorem (First-order differentiability) Let F 2 �0(H) be strictly convex. Then
int(dom(F ⇤

)) 6= ; and F ⇤ is continuously differentiable on int(dom(F ⇤
)). Conver-

sely, if F 2 �0(H) is differentiable on int(dom(F )), then F ⇤ is strictly convex on each
convex subset C ⇢ rF (int(dom(F ))).

Theorem (Second-order differentiability) Assume that F is strongly convex on H
with modulus c. Then F ⇤ has full domain and a 1/c-Lipschitz continuous gradient.
Conversely, if F 2 �0(H) has 1/c-Lipschitz continuous gradient on H, then F ⇤ is
strongly convex with modulus c on each convex subset of dom(@F ⇤

).
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The conjugate of the indicator function of a nonempty closed convex set is its
support.
Quadratic function : F (x) := 1

2 hAx, xi + hb, xi, A 2 Rn⇥n � 0 and symme-
tric. F

⇤(u) = 1
2

⌦
u� b, A�1(u � b)

↵
. If A is only semidefinite positive, we have

F

⇤(Ax + b) = 1
2 hx, Axi.

The conjugate of the directional derivative at x is the indicator of the subdifferen-
tial.
Many other examples exploiting calculus rules in classical convex analysis mono-
graphs (see bibliography at the end).
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Definition (Infimal convolution) Let F1 and F2 two functions fromH to R[{+1}.
Their infimal convolution is the function from H to R [ {±1} defined by :

(F1
+_ F2)(x) = inf {F1(x1) + F2(x2) : x1 + x2 = x} = inf

y2H
F1(y) + F2(x� y) .

It is called exact at x = x̄1 + x̄2 if the infimum is attained at (non-necessarily unique)
(x̄1, x̄2).

Infimal convolution appears as a ”convolution of infinite order” combined with expo-
nentiation (in fact in a different algebra).

Proposition Let F1 and F2 be convex functions.
If F1 and F2 have a common affine minorant, then their inf-convolution is also
convex.
Inf-convolution of F1 and F2 is convex () their strict epigraphs add up to the
strict epigraph of their inf-convolution.
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Theorem (Conjugate of an infimal convolution) Let F1 and F2 be two proper func-
tions (non-necessarily convex), such that the domain of their conjugates have a no-
nempty intersection, then

(F1
+_ F2)

⇤
= F

⇤
1 + F

⇤
2 .

In words, the Legendre-Fenchel conjugate acts as the Fourier transform in the (max, +)

algebra.

Property
Domain : dom(F1

+_ F2) = dom(F1) + dom(F2).
Inf-convolution is commutative, associative, its neutral element in �0(H) is ı{0},
and preserves the order.

Example
Distance function : let C be a nonempty convex subset of H, and k·k an arbitrary

norm. Then the distance function to C : dC = ıC
+_ k·k.

Let C1 and C2 be two nonempty convex subsets, then ıC1

+_ ıC2 = ıC1+C2 .
Moreau envelope : the function F

⇢
(x) = infz2H 1

2⇢ kx� zk2 + F (z) = F

+_
1
2⇢ k·k2 for 0 < ⇢ < +1 will be called the Moreau envelope of index ⇢ of F .
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Definition (Directional derivative) A function F admits a one-sided directional derivative at x in the
direction d if

F

0(x, d) = lim
t#0

F (x + td)� F (x)
t

= inf
t>0

F (x + td)� F (x)
t

exists with values in [�1,1]. It is two-sided if and only if F 0(x,�d) exists and F

0(x,�d) = �F

0(x, d).

Definition (Subdifferential I) The subdifferential of a function F 2 �0(H) at x 2 H is the set-valued
map @F : H! 2H

@F (x) = {u 2 H : 8z 2 H, F (z) � F (x) + hu, z � xi} ,

i.e., the set of slopes of affine functions minorizing F at x. An element u of @F (x) is called a subgradient.
The subdifferential of the indicator function of a closed convex set C is the normal cone of C at x :

NC(x) = {u 2 H : hu, x� zi � 0, 8z 2 C} .

Definition (Subdifferential II) The subdifferential of f 2 �0(H) at x 2 H if the nonempty compact
convex set whose support function is the directional derivative F

0(x, d).

@F (x) = {d 2 H : F

0(x, d) � hu, di} .
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Theorem (Properties of the subdifferential) Let F be a convex function.

For fixed x, F

0(x, d) is finite sublinear (hence convex in d).

Monotonicity :

A function F is convex on a convex set C () hu1 � u2, x1 � x2i � 0, 8ui 2 @F (xi), xi 2
C, i = 1, 2 (i.e. @F is monotone).

F is strictly convex on a convex set C () the subdifferential inequality becomes strict for

x1 6= x2 2 C () hu1 � u2, x1 � x2i > 0 (i.e. @F is strictly monotone).

F is strongly convex with modulus c > 0 () hu1 � u2, x1 � x2i � c kx1 � x2k2 ()
F (x2) � F (x1) + hu, x2 � x1i+ c

2 kx2 � x1k2 , 8x2 2 H (i.e. @F is strongly monotone).

Continuity :

@F (x) = {rF (x)} almost everywhere, except on a set of (Lebesgue) measure zero (kinks).

If F is (G

ˆ

ateaux) differentiable at x, its only subgradient at x is its gradient rF (x). Conversely,

if @F (x) = {u}, then F is (Fr

´

echet) differentiable at x, with rF (x) = u.

The subdifferential can be defined in terms of F and its conjugate F

⇤
,

u 2 @F (x) () F (x) + F

⇤(u) = hx, ui () x 2 @F

⇤(u) .
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Theorem (Calculus rules with subdifferentials) Let all considered functions be pro-

per convex.

Positive linear combinations : if

T
i

ri(dom(f

i

)) 6= ;, then @(

P
n

i=1 ⇢iFi

)(x) =

P
n

i=1 ⇢i@Fi

(x), ⇢

i

� 0, i = 1, · · · , n.

Pre-composition with an affine mapping : let A be an affine mapping : A :=

A0 ·+b, A0 is linear, such that Im(A)\ri(dom(A0)) 6= ;. Then @(F �A)(x) =

A

⇤
0@F (Ax).

Pointwise supremum : F (x) := sup

i2I F

i

(x), where I is compact. Let I(x) =
{i : F (x) = F

i

(x)}. Then,

@F (x) =

8
<

:
X

i2I(x)

⇢

i

@F

i

(x), ⇢

i

� 0 for all i 2 I(x),
X

i2I(x)

⇢

i

= 1

9
=

;

= convhull

�
[
i2I(x)@Fi

(x)

 
.
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[ ]

+1�1 0 x

|x|

epi(|·|)

�1
Nepi(|·|)(0, 0)

@| · |(0)⇥ {�1}

Theorem (Subdifferential III) Let F 2 �0(H). A point u is a subgradient of F at x
if and only if (u,�1) is normal to epi(F ) at (x, F (x)) ; i.e.

Nepi(F )(x, F (x)) = �(@F (x) ⇥ {�1}), � � 0 .

In other words, the intersection of the normal cone of epi(F ) and H at level �1 is just
the subdifferential @F (x) shifted vertically in H⇥ R by �1.

Kink
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The duality formula to be stated shortly plays an important role in dualizing optimiza-
tion problems (e.g. proximity operator calculus, ADMM for the augmented-Lagrangian
method, and many, many other situations).

Theorem (Fenchel-Rockafellar duality) Let F 2 �0(H) and G 2 �0(K), and
A := A0 · �b : H ! K be a bounded affine operator, and H and K are finite-
dimensional real Hilbert space (as we supposed from the beginning). Suppose that
0 2 ri(dom(G)) �A(ri(dom(F ))). Then

inf

x2H
F (x) + G �A(x) = �min

u2K
F

⇤
(�A

⇤
0u) + G

⇤
(u) + hu, bi ,

with the relashionships between x

? and u

?, respectively the solutions of the primal
and dual problems

F (x

?

) + F

⇤
(�A

⇤
0u

?

) = h�A

⇤
0u

?

, x

?i ,
G(Ax

?

) + G

⇤
(u

?

) = hu?

, Ax

?i ,

or equivalently (x

?

, u

?

) are the so-called Kuhn-Tucker pairs :

x

? 2 @F

⇤
(�A

⇤
0u

?

) and u

? 2 @G(Ax

?

) ,

�A

⇤
0u

? 2 @F (x

?

) and Ax

? 2 @G

⇤
(u

?

) .
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(P) : inf

x2H
F (x) + G �A(x) ,

is equivalent to
inf

(x,z)2H⇥K
F (x) + G(z) s.t. z = Ax .

This is a minimization problem in H ⇥ K with equality constraint-values in K, which
lends itself to Lagrange duality : form the Lagrangian L(x, z, u) with the dual variable
u in K :

L(x, z, u) = F (x) + G(z) + hu, Ax� zi .

Th associated closed convex dual function is :

H(u) = inf

x,z

L(x, z, u) = � sup

x,z

hu, bi+ (hu,�A0xi � F (x)) + (hu, zi �G(z)) .

By conjugacy calculus rules we obtain,

�H(u) = F ⇤
(�A

⇤
0u) + G⇤

(u) + hu, bi .

The (Lagrange) dual problem is then :

(Q) : max

u2K
H(u) = �min

u2K
F ⇤

(�A0u) + G⇤
(u) + hu, bi .
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Fenchel-Rockafellar duality: example
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Proposition Let A : Rn ! Rm be a linear operator with a nonempty range. Then
the following primal and dual problems are equivalent :

(P) : inf
x2Rn

1
2
ky �Axk22 + � kxk1

(Q) : min
u2Rm ky � uk2 s.t.

��AT
u

��
1  � .

The primal solution to (P) is related to the dual one (i.e. that of (Q)) as Ax

? = y�u

?.

Proof: Use Fenchel-Rockafellar duality lemma, conjugacy calculus rules (qua-
dratic function, norm, translation, scaling), and continuity properties of the conjugate.
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Fenchel-Rockafellar duality: example
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R3 R2

B1
ky
�

A
x

k 2


✏

(�
)

a1 a2

a3

ha1,
ui = ��

��ATu
��
1  �

x

?

(P) : inf
x2Rn

1
2
ky �Axk22 + � kxk1

(Q) : min
u2Rm ky � uk2 s.t.

��AT
u

��
1  � .

ha1,
ui = �

u?
Ax

? = y � u

?
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Optimality conditions

33

(P) min
x2H

F (x), F 2 �0(H).

Theorem (Minimality conditions) Assume that the set of minimizers is nonempty,
e.g. by coercivity. The following statements are equivalent :

(i) x

? is a global minimizer of F 2 �0(H) over H ;

(ii) 0 2 @F (x?) ;

(iii) F

0(x?
, d) � 0 for all d.

(iv) x

? is a solution to the fixed point equation x = (I + µ@F )�1 (x).

The fixed point equation in (iv) underlies the proximal iteration (or algorithm).
Why ? Keep listening.
(I + µ@F )�1 is the resolvent associated to the subdifferential, see shortly.
The above statements can be generalized to minimizers relative to a closed convex
set (in terms of the normal and tangent cones), i.e. convex programming with
nonsmooth objectives. But this path will deliberately not be pursued here because
constraints are implicit in F .
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Subgradient descent: the gist
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(P) min
x2H

F (x), F 2 �0(H).

Follow the footprints of (possibly projected) gradient descent for smooth opti-

mization.

Replace the gradient by a subgradient uk 2 @F (xk).

However, serious difficulties : no line search is possible based on decreasing

F , simply because

uk may not be a descent direction (e.g. think of the `1-norm). Thus oscilla-

tions in the objective (non-monotonic behaviour) ;

uk is so weak that the resulting sequence would not minimize F .
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Subgradient descent scheme

36

How to choose µk ?

Initialization : Choose a sequence of step sizes (µk)k2N, µk > 0. Choose an

initial x0 2 dom(F ) and obtain u0 2 @F (x0). k = 0

Main iteration : Construct a sequence of iterates (xk)k2N as follows :

repeat

xk+1 = xk � µk
uk

max(kukk , 1)
.

Get uk+1 2 @F (xk+1);

k  k + 1.

until convergence;
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Subgradient descent: Convergence
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Theorem (Global convergence of Subgradient Descent) Let F 2 �
0

(H) and ap-

ply the subgradient descent algorithm with a sequence of step sizes satisfying :

lim
k!1

µ

k

= 0 and

X

k2N
µ

k

= +1 .

Then F (x
k

) ! inf
x

F (x) and x

k

! x

? 2 M

?

, x

?

not necessarily unique.

Typical choices : µ

k

= 1

(k+1)

p , p 2 (0, 1] or µ

k

= 1

(k+1) log(k+1)

.

Not easy to choose in practice and some sequences lead to a very slow conver-

gence.

Some elaborated choices are possible in the literature, but extra information

such as knowledge about the solution set is needed.

The choice is even more complicated by floating-point computations : it is hard

to satisfy simultaneously the two step size requirements accurately.

the stopping rule is not convenient : u

k

has no reason to tend to 0. Stopping

rule when µ

k

becomes very small (compared to the scale of the problem).
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Subgradient descent: Convergence
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In other words, we need O(1/✏2) to reach an ✏-accurate solution on the objective.
Other methods to circumvent these difficulties. Many of them exploit the structure
of F to get more powerful provably convergent algorithms. This is what we are
about to do.

Theorem (Complexity result) Let F be nonsmooth convex function. Then, no ite-

rative scheme to minimize F relying only on its first-order properties (i.e. F and @F )

can achieve a better rate than O(1/
p
k) on the objective.
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Proximity operator

40

The notion of a proximity operator was introduced as a generalization in [J.-J. Moreau
1962] of convex projection operator.

Definition (Proximity operator) Let F 2 �0(H). Then, for every x 2 H, the func-
tion z 7! 1

2 kx� zk2 + F (z) achieves its infimum at a unique point denoted by
proxF x. The uniquely-valued operator proxF : H ! H thus defined is the proxi-
mity operator of F . It will be convenient to introduce the reflection operator rproxF =

2 proxF �I.
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Proximity operator: properties

41

Theorem (Some properties of the proximity operator) Let F 2 �0(H).
Let 8x, z 2 H, then

p = proxF x () x� p 2 @F (p) .

Or equivalently, proxF = (I + @F )

�1, proxF is the resolvent of the subdifferential of F , a maximal
monotone operator from H! 2

H.
Continuity : the proximity operator is firmly nonexpansive. Hence its is nonexpansive and so is its
reflection operator, and therefore they are both continuous on H into itself.
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Moreau envelope

42

Definition (Moreau envelope) The function F

⇢ (x) = infz2H 1
2⇢ kx� zk2 + F (z)

for 0 < ⇢ < +1 is the Moreau envelope of index ⇢ of F . F

⇢ is also the infimal
convolution of F with 1

2⇢ k·k
2.
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Moreau envelope: properties
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Lemma Let F ⇧ �0(H). Then its Moreau envelope F� is convex and Fréchet-
differentiable with 1/�-Lipschitz gradient

⌥ F� = (I� prox�F )/�.

Furthermore, its proximity operator is the convex combination

prox F⇢ (x) =
�

1 + �
x +

1
1 + �

prox(1+�)F (x) .

Because of the C1,1-smoothness of F� , the Moreau envelope is also known as the
Moreau-Yosida regularization of F .

Lemma (Moreau identity) Let F ⇧ �0(H), then for any x ⇧ H

prox�F⇤(x) + � proxF/�(x/�) = x, ⌃ 0 < � < +⌅ .

Corollary Let F ⇧ �0(H), then for any x ⇧ H

proxF⇤ = I� proxF ⇥⇤ proxF⇤(x) ⇧ ⇥F (proxF (x)) .
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A detailed example

F (x) = |x|
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A detailed example

F (x) = |x|
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A detailed example
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Proximal calculus

46

Proposition (Simple calculus rules) Let F 2 �0(H) and x 2 H.
1. Quadratic perturbation : let G = F + ⇣ k.k2 /2 + h., ui + �, with u 2 H, ⇣ 2 [0, +1) and � 2 R.

then proxG x = proxF/(⇣+1)((x� u)/(⇣ + 1)).

2. Translation : let G = F (.� z), with z 2 H. Then proxG x = z + proxF (x� z).

3. Scaling : let G = f(./⇣), with ⇣ 2 R \ {0}. Then proxG x = ⇣ proxF/⇣2(x/⇣).

4. Reflexion : let G : x 7! F (�x). Then proxG x = � proxF (�x).

5. Separability : let (Fi)1in a family of functions each in �0(Hi), and F : H = H1⇥ · · ·⇥Hn ! R
such that F (↵) =

Pn
i=1 Fi(↵i), ↵i 2 Hi. Then F is in �0(H) and proxF = {proxFi

}1in.

Many others are available or can be calculated.
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Proximity operator of F °A
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Lemma Let F 2 �0(K) and A = A0 · �y, where A0 : H ! K is a bounded linear

operator, and H and K are finite-dimensional.

(i) If A0 is a tight frame with constant c. Then

proxF�A(x) = x+ c�1
A

⇤
0 (proxcF �I) (A0x� y) .

(ii) If A0 is a general frame with bounds c1 and c2. Let µk 2 (0, 2/c2). Define

uk+1 =µk

⇣
I� proxµ�1

k F

⌘
� �µ�1

k uk +A(pk)
�
,

pk+1 =x�A

⇤
0uk+1 .

Then pk ! proxF�A linearly.

(iii) If c1 = 0 and F �A 2 �0(H) (typically if A is such that ri(dom(F )\Im(A)) 6= ;).

Apply the above iteration with µk 2 (0, 2/c2). Then pk ! proxF�A at the rate

O(1/k).
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Lemma Let F 2 �0(K) and A = A0 · �y, where A0 : H ! K is a bounded linear

operator, and H and K are finite-dimensional.

(i) If A0 is a tight frame with constant c. Then

proxF�A(x) = x+ c�1
A

⇤
0 (proxcF �I) (A0x� y) .

(ii) If A0 is a general frame with bounds c1 and c2. Let µk 2 (0, 2/c2). Define

uk+1 =µk

⇣
I� proxµ�1

k F

⌘
� �µ�1

k uk +A(pk)
�
,

pk+1 =x�A

⇤
0uk+1 .

Then pk ! proxF�A linearly.

(iii) If c1 = 0 and F �A 2 �0(H) (typically if A is such that ri(dom(F )\Im(A)) 6= ;).

Apply the above iteration with µk 2 (0, 2/c2). Then pk ! proxF�A at the rate

O(1/k).
Multi-step (e.g. inertial, see in the sequel) algorithms can be used as well (li-

near or O(1/k2) rate).

Robustness to errors.
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Lemma Let F1 2 �0(H) and F2 2 �0(K), and A : H ! K is a bounded linear

operator. Define F = F1 + F2 �A. We assume that:

A.1 Im(A) 6= ;.

A.2 0 2 ri(dom(F1)�Adom(F2)) (here finite dimensions).

A.3 The proximity operator of F1 and F2 are simple to compute analytically.

Let µk 2 (0, 2/|||A|||2). Define the recursion

uk+1 = µk

⇣
I� proxF2/µk

⌘ �
uk/µk +A � proxF1

(�A

⇤
uk + x)

�
.

Then, uk ! u

?
, and pk = proxF1

(�A

⇤
uk + x) ! proxF (x).
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Lemma Let F1 2 �0(H) and F2 2 �0(K), and A : H ! K is a bounded linear

operator. Define F = F1 + F2 �A. We assume that:

A.1 Im(A) 6= ;.

A.2 0 2 ri(dom(F1)�Adom(F2)) (here finite dimensions).

A.3 The proximity operator of F1 and F2 are simple to compute analytically.

Let µk 2 (0, 2/|||A|||2). Define the recursion

uk+1 = µk

⇣
I� proxF2/µk

⌘ �
uk/µk +A � proxF1

(�A

⇤
uk + x)

�
.

Then, uk ! u

?
, and pk = proxF1

(�A

⇤
uk + x) ! proxF (x).

Multi-step algorithms can be used as well (on the dual as above).

The convergence rate can be made precise (linear or O(1/ks), s = 1, 2) under

additional assumptions.

Robustness to errors (see in a little while).

For A = Id, other algorithms are possible : Douglas-Rachford or Dykstra algo-

rithm (on the primal).

Alternative : Augmented Lagrangians and solve by ADMM (for A injective,) or

primal-dual (see in the sequel).
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Thresholding/shrinkage operator: e.g. soft-thresholding for the     norm.
Available for many other functions in the literature, either regularization 
penalties or data fidelity.

Examples of proximity operators: sparsity penalties

49

Theorem Let  (x) =

P
i  (xi). Suppose that  satisfies, (i)  is convex even-

symmetric, non-negative and non-decreasing on [0, +1), and  (0) = 0. (ii)  is
twice differentiable onR\{0}. (iii)  is continuous on R, it is not necessarily smooth at
zero and admits a positive right derivative at zero  

0

+(0) = limh!0+
 (h)

h > 0. Then,
the proximity operator prox (x) has exactly one continuous solution decoupled in
each coordinate xi:

x̂i = prox (xi) =

8
<

:
0 if |xi|   

0

+(0) ,

xi �  
0
(x̂i) if |xi| >  

0

+(0) .
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The gist of splitting

52

(P) : min

x2H

nX

i=1

F

i

(x), F

i

: H! R [ {+1}, F

i

2 �0(H), and \
i

dom(F

i

) 6= ;.

M? 6= ; in the sequel to avoid trivialities.

Theorem
(i) Existence: (P) possesses at least one solution if F =

P
i Fi is coercive, i.e.

M

? 6= ;.

(ii) Uniqueness: (P) possesses at most one solution if F is strictly convex. This
occurs in particular when either one of the Fi’s is strictly convex.

(iii) Characterization: Let x 2 H. Then the following statements are equivalent:

(a) x solves (P).

(b) x = prox�F (x), � > 0, (proximal algorithm [Martinet 1972]).
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Explicit computation difficult in general

(P) : min

x2H

nX

i=1

F

i

(x), F

i

: H! R [ {+1}, F

i

2 �0(H), and \
i

dom(F

i

) 6= ;.

M? 6= ; in the sequel to avoid trivialities.

Theorem
(i) Existence: (P) possesses at least one solution if F =

P
i Fi is coercive, i.e.

M

? 6= ;.

(ii) Uniqueness: (P) possesses at most one solution if F is strictly convex. This
occurs in particular when either one of the Fi’s is strictly convex.

(iii) Characterization: Let x 2 H. Then the following statements are equivalent:

(a) x solves (P).

(b) x = prox�F (x), � > 0, (proximal algorithm [Martinet 1972]).
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Monotone operator splitting schemes

n = 2

Idea: replace explicit evaluation of prox�(
P

i Fi), by a sequence of calculations
involving only each prox�Fi

at a time.

Splitting method Assumptions

Forward-Backward [Gabay 83, Tseng 91]
Either F1 or F2 has a Lipschitz-continuous gra-

dient.

Backward-Backward [Lions 78]

F1, F2 nonsmooth but do not converge to

(@F )�1(0), but to \i(@Fi)�1(0). Problems

with sum of indicator functions or Moreau en-

velopes.

Douglas/Peaceman-Rachford [Douglas-Rachford 56,

Lions-Mercier 79]
F1, F2 nonsmooth. Most general.

Alternating-Direction Method of Multipliers (ADMM)

[Gabay et al. 80’s, Glowinski et al. 70’s]

F1, F2 nonsmooth, composition by an injective

linear operator.

Primal-dual splitting [Arrow-Hurwicz 1956, Chambolle-

Pock 2011]

F1 and F2 nonsmooth, composition by an arbi-

trary linear operator.



SSNAO’17-54

Monotone operator splitting schemes

n > 2

Idea: replace explicit evaluation of prox�(
P

i Fi), by a sequence of calculations
involving only each prox�Fi

at a time.

Generalized forward-backward [Raguet, Fadili and

Peyr

´

e, 2013]

F1 smooth, all others non-smooth.

Spingarn’s method (Douglas/Peaceman-Rachford on

product spaces), parallel splitting [Spingarn 83, Com-

bettes et al. 08]

All Fi are nonsmooth.

Projective splitting, parallel splitting [Eckstein 09] All Fi are nonsmooth.

Primal-dual splitting (product pace trick) [Combettes

et al. 2011]

All Fi smooth or not, composition by linear operators,

infimal-convolution.



SSNAO’17-

Outline
Introduction.
Non-smooth convex optimization.

Elements of convex analysis.
Elements of duality.
Optimality conditions.

Proximal framework and operator splitting.
Proximal calculus.
Monotone operator splitting.
Sum of two functions.
Generalization to more than two functions.

Take-away messages.

55



SSNAO’17-56

Forward-Backward: the gist

x is a (global) minimizer of(P)

() 0 2 @(F1 + F2)(x)

() �rF2(x) 2 @F1(x)

() (x� µrF2(x)) � x 2 @(µF )(x)

() x = proxµF1| {z }
Backward step

(x� µrF2(x)| {z }
Forward step

)

() x 2 Fix

�
proxµF1

�(I� µrF2)
�

.

(P) : min

x2H
F1(x) + F2(x),

F

i

: H! R [ {+1}, F
i

2 �0(H) ;
\

i

dom(F

i

) 6= ; ;
Set of minimizers M

? is nonempty (e.g. by coercivity) ;
F2 has a �-Lipschitz gradient.
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Forward-Backward: the scheme
Initialization : choose some x0 2 dom(F ), a sequence or a fixed

µk 2 (0, 2/�).

Main iteration :

repeat

1. Gradient descent (forward) step :

xk+1/2 = xk � µkrF2(xk).

2. Proximal (backward) step :

xk+1 = proxµkF1

�
xk+1/2

�
.

k  k + 1.

until convergence;
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Theorem Suppose that F1 and F2 2 �0(H), and F2 has a �-Lipschitz continuous

gradient. Let (µk)k2N be a sequence such that 0 < infk µk  supk µk < 2/�,

let (ak)k2N and (bk)k2N be error sequences in H such that

P
k kakk < +1 and

P
k kbkk < +1. Fix x0 2 H, and define the sequence of iterates :

xk+1 = (1� �k)xk + �k

�
proxµkF1

(xk � µk (rF2(xk) + bk)) + ak

�

where �k 2]0, 1]. Then, (xk)k2N converges to a minimizer of (P).

Forward-Backward: convergence

58
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gradient. Let (µk)k2N be a sequence such that 0 < infk µk  supk µk < 2/�,

let (ak)k2N and (bk)k2N be error sequences in H such that

P
k kakk < +1 and

P
k kbkk < +1. Fix x0 2 H, and define the sequence of iterates :

xk+1 = (1� �k)xk + �k

�
proxµkF1

(xk � µk (rF2(xk) + bk)) + ak

�

where �k 2]0, 1]. Then, (xk)k2N converges to a minimizer of (P).

Forward-Backward: convergence

58

Theorem Consider the errorless and unrelaxed version of the above forward-backward

algorithm. Then, the objective converges at the rate 1/k. If F is strongly convex, then

the convergence is linear on the iterate and objective.
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gradient. Let (µk)k2N be a sequence such that 0 < infk µk  supk µk < 2/�,

let (ak)k2N and (bk)k2N be error sequences in H such that

P
k kakk < +1 and

P
k kbkk < +1. Fix x0 2 H, and define the sequence of iterates :

xk+1 = (1� �k)xk + �k
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where �k 2]0, 1]. Then, (xk)k2N converges to a minimizer of (P).

Forward-Backward: convergence
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Theorem Consider the errorless and unrelaxed version of the above forward-backward

algorithm. Then, the objective converges at the rate 1/k. If F is strongly convex, then

the convergence is linear on the iterate and objective.

Robustness to errors in the proximity operator and in the gradient.

1/k convergence rate in the objective : nothing surprising as a one-memory

first-order scheme (recall projected gradient descent).

Can we attain the complexity upper-bound rate 1/k2 ? Yes : multistep scheme

by [Nesterov 2007,Beck-Teboulle 09,Tseng 09,Chambolle-Dossal 16].
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FISTA scheme

59

Initialization : choose some x0 2 dom(F ), a sequence or a fixed

µk 2]0, 1/�], k = 1, a � 2.

Main iteration :

repeat

yk = xk +

k � 1

k + a

(xk � xk�1).

xk+1 = proxµkF1
(yk � µkrF2(yk)) .

k  k + 1

until convergence;
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FISTA scheme: Convergence

60

Theorem Consider the FISTA algorithm with the same assumptions as before.

1. If a = 2 : F (xk)� F (x?) = O(1/k2). If F is strongly convex, then the conver-

gence is linear with a better rate than the forward-backward.

2. If a > 2 : then

(a) xk converges to a minimizer of (P).

(b) F (xk)� F (x?) = o(1/k2).

Robustness to errors but may degrade the rates.

1/k2 in the objective is optimal for first-order schemes on this class of pro-

blems.
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Douglas-Rachford: the gist

x is a (global) minimizer of(P)

() 0 2 @(F1 + F2)(x)

() 9z 2 H, z � x 2 @(�F1(x) and x� z 2 @(�F2)(x) , � > 0

() x = prox�F1
(z) and (2x� z)� x 2 @(�F2)(x)

() x = prox�F1
(z) and x = prox�F2

(2x� z) = prox�F2
� rprox�F1

(z)

() x = prox�F1
(z) and z = 2prox�F2

� rprox�F1
(z)� (2x+ z)

() x = prox�F1
(z) and z = 2prox�F2

� rprox�F1
(z)� rprox�F1

(z)

() x = prox�F1
(z) and z =

✓
1� �

2

◆
z +

�

2

rprox�F2
� rprox�F1

(z) , � 2 [0, 2]

() z 2 Fix

✓✓
1� �

2

◆
I +

�

2

rprox�F2
� rprox�F1

◆
and x = prox�F1

(z) 2 M

?
.

(P) : min

x2H
F1(x) + F2(x),

F

i

: H ! R [ {+1}, F

i

2 �0(H) ;

\
i

ri(dom(F

i

)) 6= ; ;

Set of minimizers M

?

is nonempty (e.g. by coercivity) ;
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Douglas-Rachford: the scheme
Initialization : choose some x0 2 H, �k 2 (0, 2), � > 0.

Main iteration :

repeat

1. First proximity operator : Compute

zk+1/2 = 2prox�F1
(zk)� zk .

2. Second proximity operator :

zk+1 = (1� �k/2)zk + �k/2
�
2 prox�F2

�
zk+1/2

�� zk+1/2

�
.

k  k + 1.

until convergence;
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Theorem Let � 2 (0,+1), let (�k)k2N be a sequence in (0, 2), and let (ak)k2N and

(bk)k2N be sequences in H such that

P
k2N �k(2��k) = +1 and

P
k2N �k (kakk+ kbkk) <

+1. Fix x0 2 dom(F ) and define the sequence of iterates,

zk+1/2 = prox�F1
(zk) + bk ,

zk+1 = zk + �k

�
prox�F2

� �2zk+1/2 � zk

�
+ ak � zk+1/2

�
.

Then zk converges to some fixed point z

?
and x

?
= prox�F1

(z

?
) 2 M

?
.

Douglas-Rachford: Convergence

63

Again, robustness to errors in both proximity operators.

Convergence rates in a variety of situations : asymptotic regularity, under strong

convexity, partial smoothness [Liang, Fadili and Peyr

´

e 2015,Liang, Fadili and

Peyr

´

e 2015, 2017].
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ADMM (DR on the dual): the gist

Remember
composition 

lemma

(P) : inf
x2H

F (x) + G �A(x) () (P⇤) : min
u2K

F

⇤ � (�A⇤)(u) + G

⇤(u),

F 2 �0(H), G 2 �0(K) ;
A : H! K bounded and injective linear operator ;
Domain qualification condition ;
M

? 6= ;.
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ADMM (DR on the dual): the gist

Remember
composition 

lemma

(P) : inf
x2H

F (x) + G �A(x) () (P⇤) : min
u2K

F

⇤ � (�A⇤)(u) + G

⇤(u),

F 2 �0(H), G 2 �0(K) ;
A : H! K bounded and injective linear operator ;
Domain qualification condition ;
M

? 6= ;.
Solve (P) : Apply DR to (P⇤

).

Use Fenchel-Rockafellar duality to compute the proximity operator of F

⇤ � (�A

⇤
) : injectivity

important to ensure strong monotonicity hence uniqueness of the minimizer in x.

x

k+1 = argmin

x2H
F (x) + hu

k

,Axi+ �

2 kAx� v

k

k2 ,

Use Fenchel-Rockafellar duality to compute the proximity operator of G

⇤
(in fact Moreau iden-

tity).

v

k+1 = argmin

v2K
G(v)� hu

k

, vi+ �

2 kAx

k+1 � vk2 = prox

G/�

(Ax

k+1 + u

k

/�) ,

Update dual variable.

u

k+1 = u

k

+ � (Ax

k+1 � v

k+1) .

Minimizes the augmented Lagrangian function associated to (P).
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ADMM: Convergence

65

Theorem Let the convex program (P), where A is injective. Let � 2 (0,+1), and

(ak)k2N and (bk)k2N be summable sequences in H and K. Solve (P) using the

ADMM, where the sub-problems for updating xk and vk are solved either exactly

or with errors at most ak and bk. Then if (P) has a Kuhn-Tucker pair, xk converges to

a solution of (P) and uk converges to a solution of the dual problem (P⇤).

Again, robustness to errors in both proximity operators.

Convergence rates in a variety of situations : asymptotic regularity, under strong

convexity, partial smoothness [Liang, Fadili and Peyr

´

e 2015,Liang, Fadili and

Peyr

´

e 2015, 2017].

Flexibility in the choice of splitting to ensure injectivity.
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Primal-dual splitting: the gist

T2 is Lipschitz but not co-coercive ) forward-backward does not apply.

Compensate for lack of co-coercivity :

Forward-Backward-Forward [Tseng 98].

Forward-backward in a different metric [Chambolle-Pock 2011, Yuan-He

2011].

(P) : inf
x2H

F (x) +G �A(x) () (P⇤) : min
u2K

F

⇤ � (�A⇤)(u) +G

⇤(u),

F 2 �0(H), G 2 �0(K) ;

A : H ! K a linear operator ;

Domain qualification condition ;

M

? 6= ;.

Lemma (x, u) is a Kuhn-Tucker pair if and only if

 
0

0

!
2
 
@F 0

0 @G

⇤

!

| {z }
T1

 
x

u

!
+

 
0 A⇤

�A 0

!

| {z }
T2

 
x

u

!
.

T1 and T2 are maximal monotone, and T2 is skew-adjoint linear.
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Primal-dual splitting: the gist
(P) : inf

x2H
F (x) +G �A(x) () (P⇤) : min

u2K
F

⇤ � (�A⇤)(u) +G

⇤(u),

F 2 �0(H), G 2 �0(K) ;

A : H ! K a linear operator ;

Domain qualification condition ;

M

? 6= ;.

A preconditioned version of ADMM [Chambolle-Pock 2011].

The trick is to precondition the update of x
k+1, ⌧� < 1/

������
A

������2 :

x

k+1 = argmin

x2H
F (x)+hu

k

,Axi+�

2 kAx� v

k

k2+ 1
2

⌦�
1
⌧

� �AA

⇤�
(x� x

k

), x� x

k

↵
,

This is equivalent to :

x

k+1 = prox

⌧F

(x

k

� ⌧A

⇤
x̄

k

) , x̄

k

:= u

k

+ �(Ax

k

� v

k

) .

Other steps remain unchanged.
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Primal-Dual splitting: Convergence

68

Theorem Consider the convex program (P) where A is a bounded linear operator.

Let � 2 (0,+1) and ⌧� < 1/
������A

������2
. Assume that (P) has a Kuhn-Tucker point and

solve it with the pre-conditioned ADMM. Then the sequence of primal and dual pair

converges to Kuhn-Tucker point. Furthermore, the (partial) restricted gap converges

at the rate O(1/k).

Applicable algorithm to a wide spectrum of problems.

Robustness to erros as well.

Can be accelerated with multi-step schemes for strongly convex objectives.
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Outline
Introduction.
Non-smooth convex optimization.

Elements of convex analysis.
Elements of duality.
Optimality conditions.

Proximal framework and operator splitting.
Proximal calculus.
Monotone operator splitting.
Sum of two functions.
Generalization to more than two functions.

Take-away messages.
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Spingarn’s method: the gist
(P) : min

x2H

nX

i=1

F

i

(x),

F

i

: H ! R [ {+1}, F

i

2 �0(H) ;

\
i

ri(dom(F

i

)) 6= ; ;

Set of minimizers M

?

is nonempty (e.g. by coercivity) ;
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Spingarn’s method: the gist
(P) : min

x2H

nX

i=1

F

i

(x),

Define the closed subspace S = {(x1, · · · , x

n

) 2 Hn :
P

i

x

i

= 0}, and its or-
thogonal complement S? = {(x1, · · · , x

n

) 2 Hn : x1 = x2 = · · · = x

n

}.
Let NS? be its normal cone, i.e. subdifferential of ıS? .
(P) is equivalent to min(x1,··· ,xn)

P
n

i=1 F

i

(x
i

) + ıS?(x1, · · · , x

n

).
Let’s remark that @(

P
i

F

i

(x
i

)) = @F1(x1)⇥ · · ·⇥ @F

n

(x
n

). Thus

0 2 F (x)

() 0 2 ⇥
i

@F

i

(x
i

) +NS(x1, · · · , x

n

)

() x1 = · · · = x

n

, 9u
i

= @F

i

(x
i

),
X

i

u

i

= 0 .

Applying the Douglas-Rachford splitting to this problem produces Spingarn’s me-
thod :

perform independent proximal steps on each of the functions F

i

(separable,
and so are the proximity operators) ;
and then compute the next iterate by essentially averaging the results.
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Douglas-Rachford for n>2: the scheme
Initialization : Choose (y

i
0)1in 2 Hn

, � 2 (0,+1), weights wi 2 (0, 1] that

sum up to 1 (e.g. 1/n), and let x0 =

Pn
i=1 wiy0i.

Main iteration :

repeat

1. Compute the proximal operators (in parallel if desired) :

for i = 1 to n do

z

i
k = prox�wiFi

y

i
k .

2. Average the results :

xk+1 =

nX

i=1

wiz
i
k .

3. Second proximal step of Douglas-Rachford :

for i = 1 to n do

y

i
k+1 = y

i
k + 2xk+1 � xk � z

i
k .

until convergence;



SSNAO’17-

Douglas-Rachford for n>2: Convergence

73

Theorem Let � 2 (0,+1), let

�
a

i
k

�
ink2N be the sequence of errors in each proxi-

mity operator prox�Fi
(xk) such that

P
k2N

��
a

i
k

��
< +1 for each i = 1, · · · , n. If the

functions Fi satisfy a qualification condition on the intersection of the relative interior

of their domains, then xk converges to x

?
, a solution of (P).
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Douglas-Rachford for n>2: Convergence

73

Theorem Let � 2 (0,+1), let

�
a

i
k

�
ink2N be the sequence of errors in each proxi-

mity operator prox�Fi
(xk) such that

P
k2N

��
a

i
k

��
< +1 for each i = 1, · · · , n. If the

functions Fi satisfy a qualification condition on the intersection of the relative interior

of their domains, then xk converges to x

?
, a solution of (P).

Again, robustness to errors in each proximity operator.

Convergence rates in [Liang, Fadili and Peyr

´

e 2015].
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Many, many structured optimization 
problems can be solved within this 

framework:
see practical work sessions
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Take away messages
Convex analysis and proximal splitting are a 
powerful framework for solving convex optimization 
problems, non-necessarily smooth.
Good and fast solvers for large-scale problems with 
grounded theoretical results.
A wide variety of applications.
Try it to be convinced.
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Thanks
Any questions ?


