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Clustering: Challenges and a formal model
What is clustering?

One of the most widely used techniques for exploratory data analysis

Get intuition about data by identifying meaningful groups among the
data points

Knowledge discovery

Identify groups of customers for targeted marketing

Identify groups of similar individuals in a social network

Identify groups of genes based on their expresssions (phenotypes)
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Clustering: Challenges and a formal model
A fuzzy definition

Definition (Clustering)

Task of grouping a set of objects such that similar objects end up in the
same group and dissimilar objects are separated into different groups.

@ More rigorous definition not so obvious

o Clustering is a transitive relation
@ Similarity is not: imagine xi, ..., Xm, such that each x; is very similar
to its two neighbors, x; 1 and x;11, but x; and x,,, are very dissimilar.
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Clustering: Challenges and a formal model

[[lustration
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Clustering: Challenges and a formal model

Absence of ground truth

Clustering is an unsupervised learning problem (learning from
unlabeled data).

For supervised learning the metric of performance is clear
For clustering there is no clear success evaluation procedure

For clustering there is no ground truth

For clustering it is unclear what the correct answer is

Alexandre Gramfort - Inria Clustering - Classification non-supervisée



Clustering: Challenges and a formal model

Absence of ground truth

Both of these solutions are equally justifiable solutions:
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Clustering: Challenges and a formal model

To sum up

@ There may be several very different conceivable clustering solutions
for a given data set.

@ As a result, there is a wide variety of clustering algorithms that, on
some input data, will output very different clusterings.
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Clustering: Challenges and a formal model

Zoology of clustering methods

MiniBatchKMeansAffinityPropagation MeanShift SpectralClustering Ward  AgglomerativeClustering  DBSCAN Birch
Y e o T
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Source: http://scikit-learn.org/stable/auto _examples/cluster/plot _cluster__comparison.html
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Clustering: Challenges and a formal model

A clustering model

@ A set of elements, X, and a distance function over it. That is, a

function d : X x X — R that is symmetric, satisfies d(x,x) =0
for all x € X, and (often) also satisfies the triangle inequality.

o Alternatively, the function could be a similarity function
s: X X X — [0, 1] that is symmetric and satisfies s(x, x) = 1 for all
x e X.

@ Also, clustering algorithms typically require:

o a parameter k (determining the number of required clusters).
o or a bandwidth / threshold parameter € (determining how close
points in a same cluster should be).
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Clustering: Challenges and a formal model

A clustering model

@ A partition of the domain set X" into subsets:
o C=(C,...,Ck) where UX_, C; = X and for all i # j, C:N G = 0.

@ In some situations the clustering is “soft”. The output is a
probabilistic assignment to each domain point:

o Vx € X, we get (p1(x),- .., pk(x)), where pi(x) = P[x € (] is the
probability that x belongs to cluster C;.
@ Another possible output is a clustering dendrogram, which is a
hierarchical tree of domain subsets, having the singleton sets in its
leaves, and the full domain as its root.
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© Algorithms
@ K-Means and other cost minimization clusterings
@ DBSCAN: Density based clustering
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Algorithms
History

k-means is certainly the most well known clustering algorithm

The k-means algorithm is attributed to Lloyd (1957) and was only
published in a journal in 1982.

There is a lot of misunderstanding on the underlying hypothesis

... and the limitations

There is still a lot of research to speed up this algorithm
(k-means++ initialization [Arthur et al. 2007], online k-means
[Sculley 2010], triangular inequality trick [Elkan ICML 2003],
Yinyang k-means [Ding et al. ICML 2015], better initialization
[Bachem et al. NIPS 2016]).
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Algorithms

Cost minimization clusterings

e Find a partition C = (Cy, ..., C) of minimal cost
e G((X,d), C) is the objective to be minimized

@ Most of the resulting optimization problems are NP-hard, and some
are even NP-hard to approximate.

o Consequently, when people talk about, say, k-means clustering, they
often refer to some particular common approximation algorithm
rather than the cost function or the corresponding exact solution of
the minimization problem.
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Algorithms
The k-means objective function

@ Data is partitioned into disjoint sets Cy, ..., Cx where each C; is
represented by a centroid ;.

@ We assume that the input set X' is embedded in some larger metric
space (X', d), such as RP, (so that X C X”’) and centroids are
members of X”.

@ k-means objective function measures the squared distance between
each point in X to the centroid of its cluster.

Formally:

pi(G) = argmin 3 d(x, u)?
pex x€C;

k
Giemeans (X, d), (Ci, ., G)) = D > d(x, wi(G))?

i=1 xe(;

Note: Gi_means 1S often refered to as inertia.
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Algorithms

The k-means objective function

Which can be rewritten:

k
Gk—means((X, d), (C17 ceey Ck)) = m,.%ikneX’ Z Z d(Xa Mi)2
=1 XEC,'
Samples KMeans

Alexandre Gramfort - Inria



Algorithms

The k-medoids objective function

Similar to the k-means objective, except that it requires the cluster
centroids to be members of the input set:

k
Gie-medoids (X, d), (C1, ..., C)) =  min d(x, ui)?
k-medoids ), (G k) m,...nkeXiz_;);, (x, pi)
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Algorithms

The k-median objective function

Similar to the k-medoids objective, except that the “distortion” between a
data point and the centroid of its cluster is measured by distance, rather
than by the square of the distance:

k
Gimedian (X, d), (C1, ..., Ck)) =  min XZ > d(x, )

ye k€ .
HLe- ik i=1 xe(C;

An example is the facility location problem. Consider the task of locating
k fire stations in a city. One can model houses as data points and aim to
place the stations so as to minimize the average distance between a
house and its closest fire station.
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Algorithms
Remarks

@ The latter objective functions are center based:

Ge((X,d),(Cr,...,C)) = min ZZf (x, 7))

I EX/
M1y Mk i—1 xeC;

@ Some objective functions are not center based. For example, the
sum of in-cluster distances (SOD)

k
GSOD((de)7(C17 ) Ck)) = Z Z d(X7y)

i=1 x,yeC;
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Algorithms
k-means algorithm

We describe the algorithm with respect to the Euclidean distance
function d(x,y) = [|x — y||.

Algorithm 1 (Vanilla) k-Means algorithm
1: procedure
Input: X C R"; Number of clusters k.
Initialize: Randomly choose initial centroids p1, . .., uk.
Repeat until convergence:

Vi € [k] set C; = {x € X, i = argmin; [|x — ]|}

Vi € [k] update u; = |Tl| D oxeq X

© ® NI RWDd

end procedure
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Algorithms
k-means algorithm

Theorem (k-means algorithm converges monotonically)

Each iteration of the k-means algorithm does not increase the k-means
objective function.

Remark(s)

@ No guarantee on the number of iterations to reach convergence.

@ There is no nontrivial lower bound on the gap between the value of
the k-means objective of the algorithm's output and the minimum
possible value of that objective function.

@ k-means might converge to a point which is not even a local
minimum!

@ To improve the results of k-means it is recommended to repeat the
procedure several times with different randomly chosen initial
centroids.
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Algorithms

DBSCAN: Density based clustering

@ “Density-based spatial clustering of applications with noise”
(DBSCAN) is a very popular, simple and powerful algorithm first
proposed by Ester et al. 1996 at KDD Conf. (> 11,000 citations).

@ DBSCAN is one of the most common clustering algorithms and also
most cited in scientific literature.

@ In 2014, it was awarded the test of time award at the leading data
mining conference, KDD.
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DBSCAN Algorithm

@ 2 parameters: € and the minimum number of points required to form
a dense region gq.

@ Start with an arbitrary starting point not yet visited. Retrieve its
e-neighborhood. If it contains sufficiently many points, a cluster is
started. Otherwise, the point is labeled as noise.l

e If a point is found to be a dense part of a cluster, its e-neighborhood
is also part of that cluster. All points that are found within the
e-neighborhood are added, so is their own e-neighborhood when they
are also dense.

@ Process continues until the density-connected cluster is completely
found.

@ Start again with a new point, until all points have been visited.

1A point marked as noise might later be found in a sufficiently sized e-environment
of a different point and hence be made part of a cluster.
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Algorithms

DBSCAN lllustration

With g=4 in 2D:

Red: core points, Yellow: non core but in cluster, Blue: noise

Source: https://en.wikipedia.org/wiki/DBSCAN
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Algorithm 2 DBSCAN

1. procedure DBSCAN(X, ¢, q)
Initialize: C =0.

2: for each point x in X do

3: if x is visited then

4 continue to next point.

5: end if

6: mark x as visited.

7: neighbors = getNeighbors(x, ¢)
8: if |neighbors| < g then

9: mark x as noise.

10: else

11: C = next cluster

12: expandCluster(x, neighbors, C, €, q)
13: end if

14: end for

15: Qutput: All produced clusters.
16: end procedure




1. procedure expandCluster(x, neighbors, C, ¢, q)

2 add x to C

3 for each y in neighbors do

4 if y is not visited then

5: mark y as visited

6 neighbors y = regionQuery(y, €)

7 if |neighbors y| > g then

8 neighbors = neighbors joined with neighbors y
9

: end if
10: end if
11: if y is not yet member of any cluster then
12: add y to cluster C
13: end if
14: end for

15: end procedure

16: procedure regionQuery(x, €)

17: Output: all points within x's e-neighborhood (including x)
18: end procedure




DBSCAN Pros

@ No need to specify the number of clusters in the data a priori, as
opposed to k-means.

@ It can find arbitrarily shaped clusters. It can even find a cluster
completely surrounded by (but not connected to) a different cluster.

@ Due to the q parameter, the so-called single-link effect (different
clusters being connected by a thin line of points) is reduced.

@ It has a notion of noise, and is robust to outliers.
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DBSCAN Cons

@ It is not entirely deterministic (output depends on the order of the
points).

o It still needs to specify a distance measure (like k-means or spectral
clustering).

@ It can not cluster data sets with a large difference in densities as the
g — € combination cannot then be chosen appropriately for all
clusters.
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Beyond DBSCAN

@ Ordering points to identify the clustering structure (OPTICS)
[Ankerst et al. ACM SIGMOD 1999] which can
detect clusters in data of varying density. 2

@ Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [Campello et al. 2013, Mclnnes et al. 2017]3.
o It performs DBSCAN over varying e values and finds the most stable
clustering.
o Like OPTICS it allows to find clusters of varying densities.
o It is more robust to parameter selection.

2Close to Local Outlier Factor (LOF) algorithm for anomaly detection.
3https://github.com/scikit-learn-contrib/hdbscan
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Food for thought

An Impossibility Theorem for Clustering

Jon Kleinberg
Department of Computer Science
Cornell University
Ithaca NY 14853

Abstract

Although the study of clustering is centered around an intuitively
compelling goal, it has been very difficult to develop a unified
framework for reasoning about it at a technical level, and pro-
foundly diverse approaches to clustering abound in the research
community. Here we suggest a formal perspective on the difficulty
in finding such a unification, in the form of an impossibility theo-
rem: for a set of three simple properties, we show that there is no
clustering function satisfying all three. Relaxations of these prop-
erties expose some of the interesting (and unavoidable) trade-offs
at work in well-studied clustering techniques such as single-linkage,
sum-of-pairs, k-means, and k-median.

[Kleinberg “An Impossibility Theorem for Clustering”, NIPS 2002]
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