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What is clustering?

One of the most widely used techniques for exploratory data analysis
Get intuition about data by identifying meaningful groups among the
data points
Knowledge discovery

Examples
Identify groups of customers for targeted marketing
Identify groups of similar individuals in a social network
Identify groups of genes based on their expresssions (phenotypes)
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A fuzzy definition

Definition (Clustering)

Task of grouping a set of objects such that similar objects end up in the
same group and dissimilar objects are separated into different groups.

More rigorous definition not so obvious
Clustering is a transitive relation
Similarity is not: imagine x1, . . . , xm such that each xi is very similar
to its two neighbors, xi−1 and xi+1, but x1 and xm are very dissimilar.
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Illustration

22

Clustering

Clustering is one of the most widely used techniques for exploratory data analysis.
Across all disciplines, from social sciences to biology to computer science, people
try to get a first intuition about their data by identifying meaningful groups among
the data points. For example, computational biologists cluster genes on the basis of
similarities in their expression in different experiments; retailers cluster customers,
on the basis of their customer profiles, for the purpose of targeted marketing; and
astronomers cluster stars on the basis of their spacial proximity.

The first point that one should clarify is, naturally, what is clustering? Intuitively,
clustering is the task of grouping a set of objects such that similar objects end up in
the same group and dissimilar objects are separated into different groups. Clearly,
this description is quite imprecise and possibly ambiguous. Quite surprisingly, it is
not at all clear how to come up with a more rigorous definition.

There are several sources for this difficulty. One basic problem is that the two
objectives mentioned in the earlier statement may in many cases contradict each
other. Mathematically speaking, similarity (or proximity) is not a transitive relation,
while cluster sharing is an equivalence relation and, in particular, it is a transitive
relation. More concretely, it may be the case that there is a long sequence of objects,
x1, . . . ,xm such that each xi is very similar to its two neighbors, xi−1 and xi+1, but x1
and xm are very dissimilar. If we wish to make sure that whenever two elements
are similar they share the same cluster, then we must put all of the elements of
the sequence in the same cluster. However, in that case, we end up with dissimilar
elements (x1 and xm) sharing a cluster, thus violating the second requirement.

To illustrate this point further, suppose that we would like to cluster the points
in the following picture into two clusters.

A clustering algorithm that emphasizes not separating close-by points (e.g., the
Single Linkage algorithm that will be described in Section 22.1) will cluster this input
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by separating it horizontally according to the two lines:

In contrast, a clustering method that emphasizes not having far-away points share
the same cluster (e.g., the 2-means algorithm that will be described in Section 22.1)
will cluster the same input by dividing it vertically into the right-hand half and the
left-hand half:

Another basic problem is the lack of “ground truth” for clustering, which is a
common problem in unsupervised learning. So far in the book, we have mainly dealt
with supervised learning (e.g., the problem of learning a classifier from labeled train-
ing data). The goal of supervised learning is clear – we wish to learn a classifier
which will predict the labels of future examples as accurately as possible. Further-
more, a supervised learner can estimate the success, or the risk, of its hypotheses
using the labeled training data by computing the empirical loss. In contrast, clus-
tering is an unsupervised learning problem; namely, there are no labels that we
try to predict. Instead, we wish to organize the data in some meaningful way.
As a result, there is no clear success evaluation procedure for clustering. In fact,
even on the basis of full knowledge of the underlying data distribution, it is not
clear what is the “correct” clustering for that data or how to evaluate a proposed
clustering.

Consider, for example, the following set of points in R2:
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Absence of ground truth

Clustering is an unsupervised learning problem (learning from
unlabeled data).
For supervised learning the metric of performance is clear
For clustering there is no clear success evaluation procedure
For clustering there is no ground truth
For clustering it is unclear what the correct answer is
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Absence of ground truth
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left-hand half:

Another basic problem is the lack of “ground truth” for clustering, which is a
common problem in unsupervised learning. So far in the book, we have mainly dealt
with supervised learning (e.g., the problem of learning a classifier from labeled train-
ing data). The goal of supervised learning is clear – we wish to learn a classifier
which will predict the labels of future examples as accurately as possible. Further-
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try to predict. Instead, we wish to organize the data in some meaningful way.
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even on the basis of full knowledge of the underlying data distribution, it is not
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Consider, for example, the following set of points in R2:

Both of these solutions are equally justifiable solutions:

266 Clustering

and suppose we are required to cluster them into two clusters. We have two highly
justifiable solutions:

This phenomenon is not just artificial but occurs in real applications. A given set
of objects can be clustered in various different meaningful ways. This may be due
to having different implicit notions of distance (or similarity) between objects, for
example, clustering recordings of speech by the accent of the speaker versus clus-
tering them by content, clustering movie reviews by movie topic versus clustering
them by the review sentiment, clustering paintings by topic versus clustering them
by style, and so on.

To summarize, there may be several very different conceivable clustering solu-
tions for a given data set. As a result, there is a wide variety of clustering algorithms
that, on some input data, will output very different clusterings.

A Clustering Model:
Clustering tasks can vary in terms of both the type of input they have and the type
of outcome they are expected to compute. For concreteness, we shall focus on the
following common setup:

Input – a set of elements, X , and a distance function over it. That is, a function
d : X ×X → R+ that is symmetric, satisfies d(x,x) = 0 for all x ∈ X , and often
also satisfies the triangle inequality. Alternatively, the function could be a sim-
ilarity function s : X × X → [0,1] that is symmetric and satisfies s(x,x) = 1
for all x ∈ X . Additionally, some clustering algorithms also require an input
parameter k (determining the number of required clusters).

Output – a partition of the domain set X into subsets. That is, C = (C1, . . .Ck)
where

⋃k
i=1 Ci = X and for all i ̸= j , Ci ∩ C j = ∅. In some situations the

clustering is “soft,” namely, the partition of X into the different clusters is
probabilistic where the output is a function assigning to each domain point,
x ∈ X , a vector (p1(x), . . . , pk(x)), where pi(x) = P [x ∈ Ci ] is the probability
that x belongs to cluster Ci . Another possible output is a clustering dendro-
gram (from Greek dendron = tree, gramma = drawing), which is a hierarchical
tree of domain subsets, having the singleton sets in its leaves, and the full
domain as its root. We shall discuss this formulation in more detail in the
following.

In the following we survey some of the most popular clustering methods. In the
last section of this chapter we return to the high level discussion of what is clustering.

22.1 LINKAGE-BASED CLUSTERING ALGORITHMS

Linkage-based clustering is probably the simplest and most straightforward
paradigm of clustering. These algorithms proceed in a sequence of rounds. They
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To sum up

Summary
There may be several very different conceivable clustering solutions
for a given data set.
As a result, there is a wide variety of clustering algorithms that, on
some input data, will output very different clusterings.
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Zoology of clustering methods

Source: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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A clustering model

Input
A set of elements, X , and a distance function over it. That is, a
function d : X × X → R+ that is symmetric, satisfies d(x , x) = 0
for all x ∈ X , and (often) also satisfies the triangle inequality.
Alternatively, the function could be a similarity function
s : X × X → [0, 1] that is symmetric and satisfies s(x , x) = 1 for all
x ∈ X .
Also, clustering algorithms typically require:

a parameter k (determining the number of required clusters).
or a bandwidth / threshold parameter ε (determining how close
points in a same cluster should be).
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A clustering model

Output
A partition of the domain set X into subsets:

C = (C1, . . . ,Ck) where ∪ki=1Ci = X and for all i 6= j , Ci ∩ Cj = ∅.
In some situations the clustering is “soft”. The output is a
probabilistic assignment to each domain point:

∀x ∈ X , we get (p1(x), . . . , pk(x)), where pi (x) = P[x ∈ Ci ] is the
probability that x belongs to cluster Ci .

Another possible output is a clustering dendrogram, which is a
hierarchical tree of domain subsets, having the singleton sets in its
leaves, and the full domain as its root.
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History

k-means is certainly the most well known clustering algorithm
The k-means algorithm is attributed to Lloyd (1957) and was only
published in a journal in 1982.
There is a lot of misunderstanding on the underlying hypothesis
. . . and the limitations
There is still a lot of research to speed up this algorithm
(k-means++ initialization [Arthur et al. 2007], online k-means
[Sculley 2010], triangular inequality trick [Elkan ICML 2003],
Yinyang k-means [Ding et al. ICML 2015], better initialization
[Bachem et al. NIPS 2016]).
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Cost minimization clusterings

Find a partition C = (C1, . . . ,Ck) of minimal cost
G ((X , d),C ) is the objective to be minimized

Note
Most of the resulting optimization problems are NP-hard, and some
are even NP-hard to approximate.
Consequently, when people talk about, say, k-means clustering, they
often refer to some particular common approximation algorithm
rather than the cost function or the corresponding exact solution of
the minimization problem.
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The k-means objective function

Data is partitioned into disjoint sets C1, . . . ,Ck where each Ci is
represented by a centroid µi .
We assume that the input set X is embedded in some larger metric
space (X ′, d), such as Rp, (so that X ⊆ X ′) and centroids are
members of X ′.
k-means objective function measures the squared distance between
each point in X to the centroid of its cluster.

Formally:
µi (Ci ) = arg min

µ∈X ′

∑

x∈Ci

d(x , µ)2

Gk-means((X , d), (C1, . . . ,Ck)) =
k∑

i=1

∑

x∈Ci

d(x , µi (Ci ))
2

Note: Gk-means is often refered to as inertia.
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The k-means objective function

Which can be rewritten:

Gk-means((X , d), (C1, . . . ,Ck)) = min
µ1,...µk∈X ′

k∑

i=1

∑

x∈Ci

d(x , µi )
2

Samples KMeans
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The k-medoids objective function

Similar to the k-means objective, except that it requires the cluster
centroids to be members of the input set:

Gk-medoids((X , d), (C1, . . . ,Ck)) = min
µ1,...µk∈X

k∑

i=1

∑

x∈Ci

d(x , µi )
2
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The k-median objective function

Similar to the k-medoids objective, except that the “distortion” between a
data point and the centroid of its cluster is measured by distance, rather
than by the square of the distance:

Gk-median((X , d), (C1, . . . ,Ck)) = min
µ1,...µk∈X

k∑

i=1

∑

x∈Ci

d(x , µi )

Example
An example is the facility location problem. Consider the task of locating
k fire stations in a city. One can model houses as data points and aim to
place the stations so as to minimize the average distance between a
house and its closest fire station.
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Remarks

The latter objective functions are center based:

Gf ((X , d), (C1, . . . ,Ck)) = min
µ1,...µk∈X ′

k∑

i=1

∑

x∈Ci

f (d(x , µi ))

Some objective functions are not center based. For example, the
sum of in-cluster distances (SOD)

GSOD((X , d), (C1, . . . ,Ck)) =
k∑

i=1

∑

x ,y∈Ci

d(x , y)
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k-means algorithm

We describe the algorithm with respect to the Euclidean distance
function d(x , y) = ‖x − y‖.

Algorithm 1 (Vanilla) k-Means algorithm
1: procedure

Input: X ⊂ Rn; Number of clusters k .
2: Initialize: Randomly choose initial centroids µ1, . . . , µk .
3: Repeat until convergence:
4:
5: ∀i ∈ [k] set Ci = {x ∈ X , i = arg minj ‖x − µj‖}
6:
7: ∀i ∈ [k] update µi = 1

|Ci |
∑

x∈Ci
x

8:
9: end procedure
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k-means algorithm

Theorem (k-means algorithm converges monotonically)

Each iteration of the k-means algorithm does not increase the k-means
objective function.

Remark(s)

No guarantee on the number of iterations to reach convergence.
There is no nontrivial lower bound on the gap between the value of
the k-means objective of the algorithm’s output and the minimum
possible value of that objective function.
k-means might converge to a point which is not even a local
minimum!
To improve the results of k-means it is recommended to repeat the
procedure several times with different randomly chosen initial
centroids.
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DBSCAN: Density based clustering

“Density-based spatial clustering of applications with noise”
(DBSCAN) is a very popular, simple and powerful algorithm first
proposed by Ester et al. 1996 at KDD Conf. (> 11,000 citations).
DBSCAN is one of the most common clustering algorithms and also
most cited in scientific literature.
In 2014, it was awarded the test of time award at the leading data
mining conference, KDD.
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DBSCAN Algorithm

2 parameters: ε and the minimum number of points required to form
a dense region q.
Start with an arbitrary starting point not yet visited. Retrieve its
ε-neighborhood. If it contains sufficiently many points, a cluster is
started. Otherwise, the point is labeled as noise.1

If a point is found to be a dense part of a cluster, its ε-neighborhood
is also part of that cluster. All points that are found within the
ε-neighborhood are added, so is their own ε-neighborhood when they
are also dense.
Process continues until the density-connected cluster is completely
found.
Start again with a new point, until all points have been visited.

1A point marked as noise might later be found in a sufficiently sized ε-environment
of a different point and hence be made part of a cluster.
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DBSCAN Illustration

With q=4 in 2D:

Red: core points, Yellow: non core but in cluster, Blue: noise
Source: https://en.wikipedia.org/wiki/DBSCAN
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Algorithm 2 DBSCAN
1: procedure DBSCAN(X , ε, q)

Initialize: C = 0.
2: for each point x in X do
3: if x is visited then
4: continue to next point.
5: end if
6: mark x as visited.
7: neighbors = getNeighbors(x , ε)
8: if |neighbors| < q then
9: mark x as noise.
10: else
11: C = next cluster
12: expandCluster(x, neighbors, C, ε, q)
13: end if
14: end for
15: Output: All produced clusters.
16: end procedure



1: procedure expandCluster(x, neighbors, C, ε, q)
2: add x to C
3: for each y in neighbors do
4: if y is not visited then
5: mark y as visited
6: neighbors_y = regionQuery(y, ε)
7: if |neighbors_y| ≥ q then
8: neighbors = neighbors joined with neighbors_y
9: end if
10: end if
11: if y is not yet member of any cluster then
12: add y to cluster C
13: end if
14: end for
15: end procedure
16: procedure regionQuery(x, ε)
17: Output: all points within x’s ε-neighborhood (including x)
18: end procedure
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DBSCAN Pros

No need to specify the number of clusters in the data a priori, as
opposed to k-means.
It can find arbitrarily shaped clusters. It can even find a cluster
completely surrounded by (but not connected to) a different cluster.
Due to the q parameter, the so-called single-link effect (different
clusters being connected by a thin line of points) is reduced.
It has a notion of noise, and is robust to outliers.
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DBSCAN Cons

It is not entirely deterministic (output depends on the order of the
points).
It still needs to specify a distance measure (like k-means or spectral
clustering).
It can not cluster data sets with a large difference in densities as the
q − ε combination cannot then be chosen appropriately for all
clusters.
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Beyond DBSCAN

Ordering points to identify the clustering structure (OPTICS)
[Ankerst et al. ACM SIGMOD 1999] which can
detect clusters in data of varying density. 2

Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [Campello et al. 2013, McInnes et al. 2017]3.

It performs DBSCAN over varying ε values and finds the most stable
clustering.
Like OPTICS it allows to find clusters of varying densities.
It is more robust to parameter selection.

2Close to Local Outlier Factor (LOF) algorithm for anomaly detection.
3https://github.com/scikit-learn-contrib/hdbscan
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Food for thoughts

[Kleinberg “An Impossibility Theorem for Clustering”, NIPS 2002]
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