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Introduction



The speaker

• PhD thesis on mean field games under the supervision of

Pierre-Louis Lions.

• Academic positions at Paris 7, then ENSAE, and now Paris 1.

• Main research field: optimal control and applications (incl.

mean field games, stochastic optimal control in finance,

reinforcement learning, etc.).

• Start-up (MFG Labs) with Lasry and Lions (created in 2009 –

acquired in 2013 by Havas).
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Mean field games – In the beginning were...

Pierre-Louis Lions and Jean-Michel Lasry, who introduced mean

field games (MFG) in 2006.

→ Similar ideas arose in electrical engineering (Caines, Huang,

Malhamé, 2006)

3



Introduction - Mean field games

Game theory

• The study of strategic interactions.

• Central concept of Nash equilibrium.

• In MFG: the number of players is large.

Mean field

• Approximation as in physics, here to model strategic

interactions, not interactions between particles.

• Philosophical difference: freedom... however, as Spinoza said:
This is that human freedom, which all boast that they possess, and which

consists solely in the fact, that men are conscious of their own desire, but

are ignorant of the causes whereby that desire has been determined.

• Difference for the maths: humans anticipate, particles do not!

Main consequence: the equations are not simply forward

in time.
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Numerous applications

Economics

• Economic growth and

inequality.

• Oil extraction.

• Mining industries.

• Labor market.

• etc.

Population dynamics

• Waves in stadiums (ola).

• Structure of cities.

• Traffic jam and other forms

of congestion.

• etc.

Finance

• Competition between asset

managers.

• Optimal execution of several

brokers.

• etc.
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Many forms but two main characteristics

Different forms of mean field games

• Static games / games in discrete time / differential games

(continuous time).

• Discrete / continuous state space.

Two main characteristics

• Continuum of anonymous players.

• All players maximize the same objective function (possible to

generalize to several populations of players).

A fixed-point equilibrium approach

• Each infinitesimal player takes the distribution of players as

given.

• The distribution of players proceeds from all individual choices.
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A large and worldwide community (not exhaustive and slightly

outdated)

• Collège de France: P.-L. Lions + J.-M. Lasry

• Dauphine: P. Cardaliaguet, J. Salomon, G. Turinici

• Paris-Diderot: Y. Achdou + Ph.D. students

• Nice: F. Delarue

• Italy (Roma + Padua): I. Capuzzo-Dolcetta, F. Camilli, M.

Bardi

• Princeton: R. Carmona (+ Ph.D. students), B. Moll (econ)

• Columbia: Daniel Lacker

• Chicago: R. Lucas (econ)

• McGill: P. Caines + collaborators around the world

• KAUST: D. Gomes (+ Ph.D. students), P. Markowich

• Hong Kong + Dallas: A. Bensoussan
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Some references

Initial papers

• J.-M. Lasry and P.-L. Lions. Jeux à champ moyen i. le cas

stationnaire. C. R. Acad. Sci. Paris, 343(9), 2006.

• J.-M. Lasry and P.-L. Lions. Jeux à champ moyen ii. horizon fini

et contrôle optimal. C. R. Acad. Sci. Paris, 343(10), 2006.

• J.-M. Lasry and P.-L. Lions. Mean field games. Japanese

Journal of Mathematics, 2(1), Mar. 2007.

Courses and notes

• 5 years of PLL’s lectures about MFG available on the website

of the Collège de France (in French).

• Notes by P. Cardaliaguet
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Some references (cont’d)

Some applications: O. Guéant, J.-M. Lasry and P.-L. Lions. Mean

field games and applications, in Paris-Princeton Lectures on

Mathematical Finance, 2010
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Static mean field games



Reminder about game theory

• Game theory studies strategic interactions.

• N players. Strategies (x1, x2, . . . , xN) ∈ EN (E compact set).

• Player i has utility (or score) ui (xi , x−i ).

• Key notion: Nash equilibrium

Nash equilibrium

(x∗1 , . . . , x
∗
N) is a Nash equilibrium ⇐⇒ for any player i , x∗i is the

best strategy when others play x∗−i .

i.e.:

∀i , x∗i maximizes xi 7→ ui (xi , x
∗
−i ).
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N → +∞

Mean field hypotheses

• Players have the same objective function ui = u.

• Players are anonymous: ∀xi , x−i 7→ u(xi , x−i ) is a

symmetrical function.

u(xi , x−i ) = u

xi ,
1

N − 1

∑
j 6=i

δxj

 = u
(
xi ,m

N−1(x−i )
)
.

Static MFGs

A static MFG is given by a function

U : (x ,m) ∈ E × P(E ) 7→ U(x ,m),

where m stands for the distribution of the players’ strategies.

Remark: P(E ) is the (compact) set of probability measures on E .
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Nash-MFG equilibrium

What is a Nash equilibrium when N tends to +∞?

• A Nash equilibrium with N players is a tuple (x∗1 , x
∗
2 , . . . , x

∗
N).

When N → +∞, an equilibrium is a probability measure m.

Definition: Nash-MFG

m is a Nash-MFG equilibrium

⇐⇒ The support of m is included in the argmax of x 7→ U(x ,m)

⇐⇒ For any probability measure f ∈ P(E ) on the set of

strategies E , ∫
E
U(x ,m)m ≥

∫
E
U(x ,m)f

This definition shows that m solves a (rather uncommon)

fixed-point problem.
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Underlying mathematical result

Theorem

• Let us assume that U is continuous.

• Let us consider a sequence ((xN1 , . . . , x
N
N ))N where

∀N, (xN1 , . . . , xNN ) is a Nash equilibrium of the N-player game

corresponding to U|E×EN/SN .

Then, up to a subsequence, ∃m ∈ P(E ) such that:

1. mN(xN1 , . . . , x
N
N ) weakly converges towards m.

2. m is a Nash-MFG equilibrium.

Remark: this results can also be adapted to prove an existence

result (by using mixed strategies).
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What about uniqueness?

Uniqueness

If U is decreasing in the sense that

∀m1 6= m2,

∫
(U(x ,m1)− U(x ,m2))(m1 −m2) < 0

then, an equilibrium is unique.

This type of monotonicity result is ubiquitous in the MFG

literature.

14
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MFG and planning

Variational characterization (planner’s problem)

If there exists a function m 7→ F (m) on P(E ) such that DF = U,

then any maximum of F is a Nash-MFG equilibrium.

Remark 1: Sometimes, there exists a global problem whose

solution corresponds to a MFG equilibrium.

Remark 2: Uniqueness is related to the strict concavity of F , hence

the monotonicity assumption on U.

Put your towel on the beach

• Objective function: U(x ,m) = −x2 − γm(x).

• Global problem: F (m) =
∫
−x2m(x)dx − γ

2m(x)2dx .

• Unique equilibrium, of the form m(x) = 1
γ (λ− x2)+

15
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MFG in continuous time (with

continuous state space)



Differential games

Static games are interesting but MFGs are really powerful in

continuous time (differential games):

The real power of MFGs in continuous time

• Differential/stochastic calculus.

• Ordinary and partial differential equations.

• Numerical methods.

Also, very general results have been obtained with probabilistic

methods (see Carmona, Delarue).
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Reminder of (stochastic) optimal control

Agent’s dynamics

dXt = αtdt + σdWt , X0 = x

Objective function

sup
(αs)s≥0

E
[∫ T

0
(f (Xs)− L(αs)) ds + g(XT )

]

Remarks:

• f and L can also include a time dependency (e.g. discount

rate).

• Stationary (infinite horizon)/Ergodic problems can also be

considered.

17
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Reminder of (stochastic) optimal control

Main tool: value function

The best “score” an agent can expect when he is in x at time t:

u(t, x) = sup
(αs)s≥t

E
[∫ T

t
(f (Xs)− L(αs)) ds + g(XT )|Xt = x

]

PDE

u “solves” the Hamilton-Jacobi(-Bellman) equation:

∂tu +
σ2

2
∆u + H(∇u) = −f (x), u(T , x) = g(x),

where H(p) = supα α · p − L(α).

Optimal control

The optimal control is α∗(t, x) = ∇H(∇u(t, x)).

18
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From optimal control problems to mean field games

• Continuum of players.

• Each player has a position X i that evolves according to:

dX i
t = αi

tdt + σdW i
t , X i

0 = x i

Remark: only independent idiosyncratic risks (common noise

has also been studied but it is more complicated).

• Each player optimizes:

max
(αi

s )s≥0

E
[∫ T

0

(
f (X i

s ,m(s, ·))− L(αi
s ,m(s, ·))

)
ds +g(X i

T ,m(T , ·))
]

• The Nash-equilibrium t ∈ [0,T ] 7→ m(t, ·) must be consistent

with the decisions of the agents.

19
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Examples

Repulsion

• f (x ,m) = −m(t, x)− δx2 and g = 0.

→ Willingness to be close to 0 but far from other players.

• Quadratic cost: L(α) = α2

2 .

Congestion

Cost of the form L(α,m(t, x)) = α2

2 (1 + m(t, x)).

20
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Partial differential equations

• u value function of the control problem (with given m).

• m distribution of the players

MFG PDEs

(HJB) ∂tu + σ2

2 ∆u + H(∇u,m) = −f (x ,m)

(K ) ∂tm +∇ · (m∇pH(∇u,m)) = σ2

2 ∆m

where H(p,m) = supα α · p − L(α,m).

u(T , x) = g(x), m(0, x) = m0(x)

The optimal control is α∗(t, x) = ∇pH(∇u(t, x),m(t, ·)).

21
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Remarks and variants

Forward/Backward

The system of PDEs is a forward/backward problem:

• The HJB equation is backward in time (terminal condition)

because agents anticipate the future.

• The transport equation is forward in time because it

corresponds to the dynamics of the agents.

Other frameworks

• Stationary setting (infinite horizon)

• Ergodic setting

Related problem

Same equations with initial and final conditions on m and no

terminal condition on u: the problem is then that of finding the

right terminal payoff g so that agents go from m0 to mT .

22



Remarks and variants

Forward/Backward

The system of PDEs is a forward/backward problem:

• The HJB equation is backward in time (terminal condition)

because agents anticipate the future.

• The transport equation is forward in time because it

corresponds to the dynamics of the agents.

Other frameworks

• Stationary setting (infinite horizon)

• Ergodic setting

Related problem

Same equations with initial and final conditions on m and no

terminal condition on u: the problem is then that of finding the

right terminal payoff g so that agents go from m0 to mT .

22



Remarks and variants

Forward/Backward

The system of PDEs is a forward/backward problem:

• The HJB equation is backward in time (terminal condition)

because agents anticipate the future.

• The transport equation is forward in time because it

corresponds to the dynamics of the agents.

Other frameworks

• Stationary setting (infinite horizon)

• Ergodic setting

Related problem

Same equations with initial and final conditions on m and no

terminal condition on u: the problem is then that of finding the

right terminal payoff g so that agents go from m0 to mT . 22



Some results

Existence

A wide variety of PDE results, depending on f , L, g and σ.

Uniqueness

If the cost function L does not depend on m and if f is

decreasing in the sense:

∀m1 6= m2,

∫
(f (x ,m1)− f (x ,m2))(m1 −m2) < 0

then a solution of the PDEs system is unique.

Remarks:

• Same criterion as above.

• For more general cost functions L (e.g. congestion), there is a

more general criterion (see Lions, or see the result in graphs).
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MFG with quadratic cost/Hamiltonian

MFG equations with quadratic cost function L(α) = α2

2 on the

domain [0,T ]× Ω, Ω standing for (0, 1)d :

(HJB) ∂tu +
σ2

2
∆u +

1

2
|∇u|2 = −f (x ,m)

(K) ∂tm +∇ · (m∇u) =
σ2

2
∆m

Examples of conditions

• Boundary conditions: ∂u
∂n = ∂m

∂n = 0 on (0,T )× ∂Ω

• Terminal condition: u(T , x) = g(x).

• Initial condition: m(0, x) = m0(x) ≥ 0.

The optimal control is α∗(t, x) = ∇u(t, x).
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Change of variables

Theorem: u = σ2 log(φ), m = φψ

Let’s consider a smooth solution (φ, ψ) (with φ > 0) of:

∂tφ+
σ2

2
∆φ = − 1

σ2
f (x , φψ)φ (Eφ)

∂tψ −
σ2

2
∆ψ =

1

σ2
f (x , φψ)ψ (Eψ)

• Boundary conditions: ∂φ
∂n = ∂ψ

∂n = 0 on (0,T )× ∂Ω

• Terminal condition: φ(T , ·) = exp
(
uT (·)
σ2

)
.

• Initial condition: ψ(0, ·) = m0(·)
φ(0,·)

Then (u,m) = (σ2 log(φ), φψ) is a solution of (MFG).

Nice existence results exist on this system (see some of my papers).
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Numerics and examples



Numerical methods

• Variational formulation: when a global maximization problem

exists, gradient-descent/ascent can be used (see Lachapelle,

Salomon, Turinici)

• Finite difference method (Achdou and Capuzzo-Dolcetta)

• Specific methods in the quadratic cost case (see Guéant).
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Examples with population dynamics

Toy problem in the quadratic case

• f (x , ξ) = −16(x − 1/2)2 − 0.1 max(0,min(5, ξ)), i.e. agents

want to live near x = 1
2 but they do not want to live together.

• T = 0.5

• g = 0

• σ = 1

• m0(x) = µ(x)∫ 1
0 µ(x ′)dx ′

, where

µ(x) = 1 + 0.2 cos

(
π

(
2x − 3

2

))2

.
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Toy problem in the quadratic case

The functions φ and ψ.

28



Toy problem in the quadratic case

The dynamics of the distribution m.

29



Examples with population dynamics (videos provided by Y.

Achdou)

Going out of a movie theater (1)

• We consider a movie theatre with 6 rows, and 2 doors in the

front to exit.

• Neumann conditions on walls.

• Homogenous Dirichlet conditions at the doors.

• Running penalty while staying in the room.

• Congestion effects.

30



Examples with population dynamics (videos provided by Y.

Achdou)

Going out of a movie theater (2)

• The same movie theatre with 6 rows, and 2 doors in the front

to exit.

• One door only will be open at a pre-defined time, but nobody

knows which one.
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Numerous economic applications

Many models in economics and finance – for instance:

• Interaction between economic growth and inequalities (where

Pareto distributions play a central role).

→ See Guéant, Lasry, Lions (Paris-Princeton lectures).

→ Similar ideas developed by Lucas and Moll.

• Competition between asset managers.

→ Guéant (Risk and decision analysis, 2013)

• Oil extraction (à la Hotelling) with noise.

→ See Guéant, Lasry, Lions (Paris-Princeton lectures).

• A long-term model for the mining industries.

→ Joint work of Achdou, Giraud, Lasry, Lions, and

Scheinkman.
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→ Guéant (Risk and decision analysis, 2013)
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Special for Huawei: MFG on graphs



Framework

MFGs are often written on continuous state spaces, but what

about discrete structures?

Notations for graph

• Graph G. Nodes indexed by integers from 1 to N.

• ∀i ∈ N = {1, . . . ,N}:

• V(i) ⊂ N \ {i} the set of nodes j for which a directed edge

exists from i to j (cardinal: di ).

• V−1(i) ⊂ N \ {i} the set of nodes j for which a directed edge

exists from j to i .
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Framework (continued)

Players, strategies, and costs

• Each player’s position: Markov chain (Xt)t with values in G.

• Instantaneous transition probabilities at time t:

λt(i , ·) : V(i)→ R+ (∀i ∈ N )

• Instantaneous cost L(i , (λi ,j)j∈V(i)) to set the value of λ(i , j)

to λi ,j .
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Hypotheses

Hypotheses on L

• Super-linearity hypothesis:

∀i ∈ N , lim
λ∈Rdi

+ ,|λ|→+∞

L(i , λ)

|λ|
= +∞

• Convexity hypothesis:

∀i ∈ N , λ ∈ Rdi
+ 7→ L(i , λ) is strictly convex.

Also, we define:

∀i ∈ N , p ∈ Rdi 7→ H(i , p) = sup
λ∈Rdi

+

λ · p − L(i , λ).
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Mean field game - control problem

Control problem

• Admissible Markovian controls:

A =
{

(λt(i , j))t∈[0,T ],i∈N ,j∈V(i) |t 7→ λt(i , j) ∈ L∞(0,T )
}

• For λ ∈ A and a given function m : [0,T ] 7→ PN we define

the payoff function: Jm : [0,T ]×N ×A → R by:

Jm(t, i , λ) = E

[∫ T

t
(−L(Xs , λs(Xs , ·)) + f (Xs ,m(s))) ds

+g (XT ,m(T ))

]
for (Xs)s∈[t,T ] a Markov chain on G, starting from i at time t,

with instantaneous transition probabilities given by (λs)s∈[t,T ].

Remark: ∀i ∈ N , f (i , ·) and g(i , ·) are assumed to be continuous

on PN .
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Nash equilibrium

Nash-MFG equilibrium

A differentiable function m : t ∈ [0,T ] 7→ (m(t, i))i ∈ PN is said

to be a Nash-MFG equilibrium, if there exists an admissible control

λ ∈ A such that:

∀λ̃ ∈ A, ∀i ∈ N , Jm(0, i , λ) ≥ Jm(0, i , λ̃)

and

∀i ∈ N , d
dt

m(t, i) =
∑

j∈V−1(i)

λt(j , i)m(t, j)−
∑

j∈V(i)

λt(i , j)m(t, i)

In that case, λ is called an optimal control.
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The G-MFG equations

Definition (The G-MFG equations)

The G-MFG equations consist in a system of 2N equations, the

unknown being t ∈ [0,T ] 7→ (u(t),m(t)):

∀i ∈ N , d

dt
u(t, i)+H

(
i , (u(t, j)− u(t, i))j∈V(i)

)
+f (i ,m(t)) = 0,

∀i , d
dt

m(t, i) =
∑

j∈V−1(i)

∂H(j , ·)
∂pi

(
(u(t, k)− u(t, j))k∈V(j)

)
m(t, j)

−
∑

j∈V(i)

∂H(i , ·)
∂pj

(
(u(t, k)− u(t, i))k∈V(i)

)
m(t, i)

with u(T , i) = g(i ,m(T )) and m(0) = m0 ∈ PN given.
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The G-MFG equations

Proposition (The G-MFG equations as a sufficient condition)

Let m0 ∈ PN and let us consider a C 1 solution (u(t),m(t)) of the

G-MFG equations with (m(0, 1), . . . ,m(0,N)) = m0.

Then:

• t 7→ m(t) = (m(t, 1), . . . ,m(t,N)) is a Nash-MFG equilibrium

• The relations λt(i , j) = ∂H(i ,·)
∂pj

(
(u(t, k)− u(t, i))k∈V(i)

)
define an optimal control.
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Existence of a solution

Proposition (Existence of a solution to the G-MFG equations)

Let m0 ∈ PN . Under the assumptions made above, there exists a

C 1 solution (u,m) of the G-MFG equations such that m(0) = m0.

Sketch of proof (Fixed point):

• Comparison principle leads a priori bounds on u

sup
i∈N
‖u(·, i)‖∞ ≤ sup

i∈N
‖g(i , ·)‖∞

+

(
sup
i∈N
‖f (i , ·)‖∞ + sup

i∈N
|H(i , 0)|

)
T .

• ⇒ bounds on dm
dt .

• Ascoli + Schauder to conclude.
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sup
i∈N
‖u(·, i)‖∞ ≤ sup

i∈N
‖g(i , ·)‖∞

+

(
sup
i∈N
‖f (i , ·)‖∞ + sup

i∈N
|H(i , 0)|

)
T .

• ⇒ bounds on dm
dt .

• Ascoli + Schauder to conclude.
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Uniqueness of smooth solutions

Proposition (Uniqueness for the solution of the G-MFG

equations)

Assume that f and g are such that:

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(f (i ,m)−f (i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

and

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(g(i ,m)−g(i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

Then, if (û, m̂) and (ũ, m̃) are two C 1 solutions of the G-MFG

equations, we have m̂ = m̃ and û = ũ.
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The G-Master equations

Definition (The G-Master equations)

The G-Master equations consist in N equations, the unknown

being (t,m) ∈ [0,T ]× PN 7→ (U1(t,m), . . . ,UN(t,m)).

∀i ∈ N , ∂Ui

∂t
(t,m) + H

(
i , (Uj(t,m)− Ui (t,m))j∈V(i)

)
+

N∑
l=1

∂Ui

∂ml
(t,m)

 ∑
j∈V−1(l)

∂H(j , ·)
∂pl

(
(Uk(t,m)− Uj(t,m))k∈V(j)

)
mj

−
∑

j∈V(l)

∂H(l , ·)
∂pj

(
(Uk(t,m)− Ul(t,m))k∈V(l)

)
ml

+ f (i ,m) = 0

with Ui (T ,m) = g(i ,m).
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The G-Master equations

Proposition (From G-Master equations to G-MFG equations)

If (t,m) ∈ [0,T ]× PN 7→ (U1(t,m), . . . ,UN(t,m)) is a C 1

solution to the G-Master equations.

If a function m is such that m(0) = m0 ∈ PN and d
dtm(t, i) =

∑
j∈V−1(i)

∂H(j , ·)
∂pi

(
(Uk(t,m(t))− Uj(t,m(t)))k∈V(j)

)
m(t, j)

−
∑

j∈V(i)

∂H(i , ·)
∂pj

(
(Uk(t,m(t))− Ui (t,m(t)))k∈V(i)

)
m(t, i)

Then t ∈ [0,T ] 7→ (U1(t,m(t)), . . . ,UN(t,m(t)),m(t)) is a

solution of the G-MFG equations.
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Potential games

Assumptions

We suppose that there exist two C 1 functions:

F : (m1, . . . ,mN) ∈ PN 7→ F (m1, . . . ,mN)

G : (m1, . . . ,mN) ∈ PN 7→ G (m1, . . . ,mN)

such that ∀i ∈ N :
∂F

∂mi
= f (i , ·)

∂G

∂mi
= g(i , ·)
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Planning problem

We introduce for t ∈ [0,T ], mt ∈ PN and a given admissible

control (function) λ ∈ A, the payoff function

J (t,mt , λ) =∫ T

t

(
F (m(s))−

N∑
i=1

L(i , (λs(i , j))j∈V(i))m(s, i)

)
ds + G (m(T ))

where ∀i ∈ N ,m(t, i) = mt
i and ∀i ∈ N ,∀s ∈ [t,T ]:

d

ds
m(s, i) =

∑
j∈V−1(i)

λs(j , i)m(s, j)−
∑

j∈V(i)

λs(i , j)m(s, i)

Optimization problem

The (deterministic) optimization problem we consider is, for a

given m0 ∈ PN :

sup
λ∈A
J (0,m0, λ).
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HJ equation

Definition (The G-planning equation)

The G-planning equation consists in one PDE in Φ(t,m):

∂Φ

∂t
(t,m1, . . . ,mN) +H(m1, . . . ,mN ,∇Φ) + F (m1, . . . ,mN) = 0

with the terminal conditions Φ(T ,m) = G (m), where:

H(m, p) = sup
(λi,j )i∈N ,j∈V(i)

N∑
i=1

[ ∑
j∈V−1(i)

λj ,imj −
∑

j∈V(i)

λi ,jmi

 pi

−L(i , (λi ,j)j∈V(i))mi

]
=

N∑
i=1

miH
(
i , (pj − pi )j∈V(i)

)
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Solving the planning problem

Proposition

Let us consider a C 1 function Φ solution of the G-planning

equation. Then, Φ restricted to [0,T ]× PN is the value function

of the above planning problem, i.e.:

∀(t,mt) ∈ [0,T ]× PN ,Φ(t,mt) = sup
λ∈A
J (t,mt , λ)
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Solving the planning problem

Proposition

Moreover, if we define ∀i ∈ N ,m(t, i) = mt
i and

∀i ∈ N ,∀s ∈ [t,T ]

d

ds
m(s, i) =

∑
j∈V−1(i)

λs(j , i)m(s, j)−
∑

j∈V(i)

λs(i , j)m(s, i)

with

λs(i , j) =
∂H(i , ·)
∂pj

((
∂Φ

∂mk
(s,m(s))− ∂Φ

∂mi
(s,m(s))

)
k∈V(i)

)

then λ is an optimal control for the planning problem.
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Going back to MFG

Proposition

Let Φ be a C 2 solution of the G-planning equation.

Define ∀i ∈ N , ∀t ∈ [0,T ], ∀m ∈ PN , Ui (t,m) = ∂Φ
∂mi

(t,m).

Then, ∇Φ = U = (U1, . . . ,UN) verifies the G-Master equations.

Consequently, if we define ∀i ∈ N ,m(0, i) = m0
i for a given

m0 ∈ PN and ∀i ∈ N ,∀s ∈ [t,T ]:
d
dsm(s, i) =

∑
j∈V−1(i) λs(j , i)m(s, j)−

∑
j∈V(i) λs(i , j)m(s, i)

with λs(i , j) = ∂H(i ,·)
∂pj

((
∂Φ
∂mk

(s,m(s))− ∂Φ
∂mi

(s,m(s))
)
k∈V(i)

)
then m is a Nash-MFG equilibrium and λ is an optimal control for

the initial mean field game (the decentralized problem).
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Extending to models with congestion

We can extend existence and uniqueness of solutions of the

G-MFG equations to more general Hamiltonians.

We are not limited to

L(i , (λi ,j)j∈V(i),m) = L(i , (λi ,j)j∈V(i))− f (i ,m)

Assumptions

• Continuity: ∀i ∈ N ,L(i , ·, ·) is a continuous function from

Rdi
+ × PN to R

• Asymptotic super-linearity:

∀i ∈ N ,∀m ∈ PN , lim
λ∈Rdi

+ ,|λ|→+∞
L(i ,λ,m)
|λ| = +∞
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Extending to models with congestion

Hamiltonian functions:

∀i ∈ N , p ∈ Rdi ,m ∈ PN 7→ H(i , p,m) = sup
λ∈Rdi

+

λ · p − L(i , λ,m)

Hypotheses

• ∀i ∈ N , H(i , ·, ·) is a continuous function.

• ∀i ∈ N ,∀m ∈ PN , H(i , ·,m) is a C 1 function with:

∂H

∂p
(i , p,m) = argmax

λ∈Rdi
+
λ · p − L(i , λ,m)

• ∀i ∈ N ,∀j ∈ V(i), ∂H
∂pj

(i , ·, ·) is a continuous function.
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Extending to models with congestion - Existence

Using the same proof as above:

Proposition (Existence)

Under the assumptions made above, there exists a C 1 solution

(u,m) of the G-MFG equations.
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Extending to models with congestion - Uniqueness

Proposition (Uniqueness)

Assume that g is such that:

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(g(i ,m)−g(i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

Assume that the hamiltonian functions can be written as:

∀i ∈ N ,∀p ∈ Rdi , ∀m ∈ PN ,H(i , p,m) = Hc(i , p,m) + f (i ,m)

with ∀i ∈ N , f (i , ·) a continuous function satisfying

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(f (i ,m)−f (i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

53



Extending to models with congestion - Uniqueness

Proposition (Uniqueness)

Assume that g is such that:

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(g(i ,m)−g(i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

Assume that the hamiltonian functions can be written as:

∀i ∈ N ,∀p ∈ Rdi , ∀m ∈ PN ,H(i , p,m) = Hc(i , p,m) + f (i ,m)

with ∀i ∈ N , f (i , ·) a continuous function satisfying

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(f (i ,m)−f (i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

53



Extending to models with congestion - Uniqueness

Proposition (Uniqueness)

Assume that g is such that:

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(g(i ,m)−g(i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

Assume that the hamiltonian functions can be written as:

∀i ∈ N ,∀p ∈ Rdi , ∀m ∈ PN ,H(i , p,m) = Hc(i , p,m) + f (i ,m)

with ∀i ∈ N , f (i , ·) a continuous function satisfying

∀(m, µ) ∈ PN×PN ,
N∑
i=1

(f (i ,m)−f (i , µ))(mi−µi ) ≥ 0 =⇒ m = µ

53



Extending to models with congestion - Uniqueness

Proposition (Uniqueness (continued))

and ∀i ∈ N , Hc(i , ·, ·) a C 1 function with:

∀j ∈ V(i), ∂Hc
∂pj

(i , ·, ·) a C 1 function on Rn × PN

Now, let us define

A : (q1, . . . , qN ,m) ∈
∏N

i=1 Rdi × PN 7→ (αij(qi ,m))i ,j ∈MN

defined by:

αij(qi ,m) = −∂Hc

∂mj
(i , qi ,m)

Let us also define, ∀i ∈ N ,

B i : (qi ,m) ∈ Rdi × PN 7→
(
βijk(qi ,m)

)
j ,k
∈MN,di defined by:

βijk(qi ,m) = mi
∂2Hc

∂mj∂qik
(i , qi ,m)
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Extending to models with congestion - Uniqueness

Proposition (Uniqueness (continued))
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Extending to models with congestion - Uniqueness

Proposition (Uniqueness (continued))
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Extending to models with congestion - Uniqueness

Proposition (Uniqueness (continued))

Let us also define, ∀i ∈ N ,

C i : (qi ,m) ∈ Rdi × PN 7→
(
γ ijk(qi ,m)

)
j ,k
∈Mdi ,N defined by:

γ ijk(qi ,m) = mi
∂2Hc

∂mk∂qij
(i , qi ,m)

Let us finally define, ∀i ∈ N ,

D i : (qi ,m) ∈ Rdi × PN 7→
(
δijk(qi ,m)

)
j ,k
∈Mdi defined by:

δijk(qi ,m) = mi
∂2Hc

∂qij∂qik
(i , qi ,m)
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Extending to models with congestion - Uniqueness

Proposition (Uniqueness (continued))
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Extending to models with congestion - Uniqueness

Proposition (Uniqueness (continued))

Assume that ∀(q1, . . . , qN ,m) ∈
∏N

i=1 Rdi × PN

A(q1, . . . , qN ,m) B1(q1,m) · · · · · · · · · BN(qN ,m)

C 1(q1,m) D1(q1,m) 0 · · · · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0

CN(qN ,m) 0 · · · · · · 0 DN(qN ,m)


≥ 0

Then, if (û, m̂) and (ũ, m̃) are two C 1 solutions of the G-MFG

equations, we have m̂ = m̃ and û = ũ.
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Conclusion



Advantages and limitations of MFGs

Advantages

• Large class of problems can be modeled.

• Benefit from centuries of differential calculus.

• Numerical methods to solve PDEs are available.

• Possibility to extend the framework to several continuums of

agents and to add big players.

• Possibility to have common noise, but equations are more

difficult (Master equation).

Limitations/Drawbacks

• Only rational/perfect expectations → models are not flexible

enough sometimes.

• Numerical methods on graphs have not been proposed...

maybe Reinforcement Learning.
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The End

Thank you. Questions?
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