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Introduction

Part 1: Introduction ]
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General model

Unknown signal mixture with additive noise

y(n) = fet(s(n)) + w(n) (1)
with
@ y(n): observations vector at time-index n
@ w(n): white Gaussian noise with zero-mean

Find out the multi-variate input s(n) given
— only a set of observations y(n)
— statistical model for the noise

Blind techniques

Unknown fct without deterministic help of s(n) to estimate it
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Introduction

Problem classification

@ s(n) belongs to a discrete set: equalization
— Military applications: passive listening
— Civilian applications: no training sequence
o Goal 1: remove the header and increase the data rate (be careful:

with the same raw data rate)
o Goal 2: follow very fast variation of wireless channel (be careful: set of

observations is small)
@ s(n) belongs to a uncountable set: source separation
— Audio (cocktail party)

The cocktail party
effect is the
phenomenon of
being able to focus
one’s auditory
attention on a
particular stimulus
while filtering out
a range of other
stimuli, much the
same way that a
partygoer can
focus on asingle
conversation in a
noisy room.

— Hyperspectral imaging
— Cosmology (Cosmic Microwave Background map with Planck data)
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Introduction

Problem classification (cont'd)

In the context of Blind Source Separation (BSS):
@ Instantaneous mixture:

y(n) = Hs(n) + w(n)

with a unknown matrix H
@ Convolutive mixture:

L
y(n) =Y H(®)s(n— 1) +w(n)
£=0

with a unknown set of matrices H(¢)
@ Nonlinear mixture: fct is not linear

BSS field

@ Vast community mainly working on the instantaneous case
@ Goal: find out s(n) up to scale and permutation operators
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Considered Problem

Go back to equalization (done in blindly manner)

Unlike BSS, sources are strongly structured:
@ discrete set (often a lattice, i.e., Z-module)
@ discrete set with specific properties: constant modulus if PSK

@ man-made source (can be even modify to help the blind
equalization step)

Classification problem rather than Regression problem

First questions

@ Do we have a Input/Output model given by Eq. (1)?
@ If yes, what is the shape of the mixture given by fct?
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Signal model

@ Single-user context
@ Single-antenna context
@ Multipath propagation channel

Equivalent discrete-time channel model (by sampling EM wave at the
symbol rate)

y(n)=> h()s(n— ) +w(n),¥n=0,....,N-1<y=Hs+w
4

where H is a band-Toeplitz matrix, N is the frame size
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Introduction

Signal model (cont'd)

Sampling at symbol rate leads to
@ no information loss on the symbol sequence

@ but information loss on the electro-magnetic wave, and probably
on the channel impulse response (our goal, here)

Go back to the “true” receive signal...

y(t)=>_s(nh(t— nTs) + w(t), vt € R
n
with
@ s(n): symbol sequence
@ w(t): white Gaussian noise
@ h(t): filter coming from the channel and the transmitter

occupied band = { 145 1 +p}

2T, ' 2T,

with the roll-off factor p € (0, 1]
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Signal framework

Shannon-Nyquist sampling theorem = T = %
@ Scalar framework: no filtering anymore

y(n) = y(nT) = s(knTs/2 — KTs) + w(n)
K
@ Vector framework: SIMO filtering
{ yi(n) = y(nTs) = hyxs(n)+ wy(n)
ya(n) = y(nTs+Ts/2) = h2xs(n)+ wa(n)
with hy(n) = h(nTs) and ha(n) = h(nTs + T5/2)

e & o 6 6 o 09

T,

Philippe Ciblat (Télécom ParisTech) Short overview on Blind Equalization



Introduction
Problems to be solved

Estimate

1. Scalar case: hy given y;(n) only and hy given y»(n) only, i.e.,
working with model of Slide 7
2. Vector case: h = [hy, ho]T given y(n) = [y1(n), y2(n)]" jointly

Glossary:
@ without training sequence
~~» Non-Data-aided (NDA) or blind/unsupervised
@ with training sequence
~~» Data-aided (DA) or supervised
@ with decision-feedback
~~ Decision-Directed (DD)
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Statistics

Part 2: Statistical framework J
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Available data statistics

@ Only {y(n)}"- is available to estimate H

@ What is an algorithm here? a function depending only on
{y(m}n= -

... a statistic of the random process y(n)

e (ty(miy)

Choice of O:

@ P-order polynomial: moments of the random process
Question: which orders are relevant? listen to the talk

@ A Deep Neural Network (DNN)
Question: how calculating the weights? see Slide 37
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Statistics
A not-so toy example

y(n) = Hs(n) + w(n)

with
@ y(n) is a vector of length L
@ His a L x L square full rank matrix

@ s(n), w(n) are i.i.d. circularly-symmetric Gaussian vectors with
zero-mean and variances o2 and o2, respectively

@ y(n) Gaussian with zero-mean and correlation matrix
R(H) = 02HH" + 521d,
@ R(H) = R(HU) for any unitary matrix U

@ Principal Component Analysis (PCA) is a deadlock

s(n) has to be non-Gaussian
= Independent Component Analysis (ICA)
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Scalar case

Go back to blind equalization

y(n) = hxs(n)+ w(n)

As y(n) is stationary, second-order information lies in

S(e2f7rf) - Z r(m)e—2i7rfm _ Ug\h(62i”f)|2 + 05‘/
with
° f(m) Ely(n+ m)y(n)]
h(z) =2, h(£);~*, with 3 = €'

@ Lack of information on the channel impulse response, except if
@ h(3) is phase minimum (h(3) # 0 if [3] > 1)
@ non-stationary signal
e non-Gaussian signal (by resorting to high-order statistics) : OK for
PAM, PSK, QAM sources
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Statistics

Scalar case: the pavement of the HOS road

Let X = [Xi, ..., Xn] be a real-valued random vector of length N.

Characteristic function of the first kind (MGF)
Uy (1w E[e""Tx] ( /px e xdx)

Moments (of order s) «« component of Taylor series expansion of Wy
for s-th order
Example: N = 2; Second-order means E[XZ],E[XZ], and E[X; X>]

Characteristic function of the second kind (CGF)

Oy w > log(Vx(w))

Cumulants (of order s) o component of Taylor series expansion of ®x
for s-th order
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Useful properties

@ Why cumulants? let X and Y be independent vectors
Vix,v)(w) = Wx(w1).Vy(w2) but px vi(w) = Px(wr) + Py(w2)
@ X =[Xi,---,Xn]and Y =[Yi,---, Yn] be independent vectors
cumg (X, + Y, -, X +Yi,) = cumg(X;

1yt

, Xi,)+eums(Y;

oY)

@ X =[Xi,---, Xy] with at least two independent components
cump(Xy,- -, Xn) =0

@ X =[Xi,---, Xn] Gaussian vector

cumg(Xi,---,X,)=0 if §>3

ls

@ No HOS information for Gaussian vector
@ “Distance” to the Gaussian distribution = (normalized) Kurtosis

cumg (X, X, X, X)
(E[|x[2])?

Ry =
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Statistics

Fourth-order information: the trispectrum

84(62i7rf1 : e2i7rf2; ezfﬂfg) _ Z cum4(m1 , Mo, ms)e—ziw(f1m1+f2m2+f3m3)
my,mgz,ms

= ksh(e?™")h(e2 k) h(e2imh)h(e?™(~hi+kth))

with cuma(my, mg, mg) = cum(y(n), y(n+ m), y(n —mg), y(n — mg))

@ Trispectrum provides information enough on channel impulse
response

@ Question: how carrying out algorithms using it (see Part 3)
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Vector case

Go back to the signal model

y(n) = hx s(n) +w(n)
with y(n) = [y+(n), y2(m)]" and h(n) = [hs (1), ha(n)]"

Reminder: oversampling or symbol rate sampling with two RX

As y(n) is stationary, second-order information lies in
S(eZI-rrf) _ Z R(m)e—Ziﬂfm — Ugh(GZiwf)h(eZITrf)H
m

with R(m) = E [y(n+ m)y(n)"] and h(e*™") = 3", h(¢)e~2""¢

@ Unique solution if h(3) is phase minimum (h(3) # 0 if [3| > 1)

@ Unrestrictive assumption since often hy(3) # h2(3), V3, i.e., no
common root, i.e., h1(3) and hy(3) are prime jointly

@ Information enough on channel impulse response
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Statistics

Vector case: a cyclostationarity point-of-view

Go back to the continuous-time signal model
y(t) = s(k)h(t — kTs) + w(t)

k

Its autocorrelation is periodic with period T;

tsr(t,r)=E [ya(t +7)ya(t)

@ y(n) cyclostationary with period (T5/T) = 2
@ By denoting § = (sp,0, 51,0, - - ), we have

Remark : Cyclostationary discrete-time signal with period 1 is
stationary
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Statistics

Cyclostationary second-order information

Fourier series expansion of the correlation:

n— r(n,m) = E[y(n+ m)y(n)] = r®O(m) 4 r(/2(m)e?~(1/2n

@ « € {0,1/2} : cyclic frequencies

@ {r(®)(m)}nm: set of cyclic correlation at cyclic frequency o

o S@(e?) =3 rl®)(m)e2"™m: cyclic spectrum at cyclic
frequency «

S(O)(eZI'ﬂ-f) _ 0_§|'F7(62i7\-)‘)|27 8(15)(621'7#) _ Ugh(eZiﬂf)E(eZhr(H»%))

@ Cyclic spectra provide information enough on channel impulse
response

@ Question: how carrying out algorithms using it (see Part 4)
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Statistics

Take-home message

stationary SISO
(ante 1991) HOS algorithms

Sampling at T}

y=hx*s

cyclostationary SISO

Samplingat T2 | [ |- SOS algorithms

stationary SIMO

y=hxs
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Part 3: High-Order Statistics based Algorithms ]
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HOS

Principle

@ Usually the algorithms rely on blind deconvolution principle, i.e.,
retrieving the symbol sequence {s(n)}, directly from {y(n)},

@ Talk done with the stationary SISO model

min £ [f(2(n)]

with
@ z(n) = p*y(n)
@ p the equalizer filter
@ f anonlinear and nonquadratic cost function
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HOS

Some algorithms

Sato Algorithm [Satc1975]

J = E [(z(n) — sign(z(n)))?]

Constant Modulus Algorithm (CMA) [Godard1980]

J=E(lz(n)? - ©)°]

with C = E[|s,|*]/E[|sn|2]

Kurtosis Minimization (KM) [ShalviWeinsteinl1990]

J = ||
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HOS

Implementation issue

How finding the minimum of J(p) = E[Jx(p)] ? J

Blockwise processing Adaptive processing
block of size N

- T RO

n

e -

In(p) = 3 St Ju(P) Ji(p) Ju(p)
We replace J(p) with Jy(p) We replace J(p) with Ju(p) at
time/iteration n
U o LMS
— p‘tgp‘z -~ o @ Newton

Gradient algo. (Stochastic) Gradient algo.

Ji dJn
Pir1 =Pi — Manép) |p,- Pnr1 =Pn— 1 a%p) |pn
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HOS

Application to CMA

Adaptive implementation
Pri1 = Pn— uy,(n)2z(n)(|z(n)| — Const)

= Pp— 1Y, (M(2(n) — Fema(2(n)))
with
oy, (n=1[y(n), - ,y(n—Lp)"
® Fuma(2(n)) = z(n)(1 + C — |2(n)[?)
@ if KM, Fn(2(n)) = z(n)(1 + sgn(xs)|z(n)[?)

Special case: training sequence
J = E[|z(n) - s(n)[?]
Adaptive implementation

Pri1 = Pn — 1YL, (m(2(n) — s(n))

@ s(n) may be replaced by 5(n) after initial convergence (DD)
@ s(n) is replaced by F(z(n)) which plays the role of “training”
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HOS

Take-home message

/ _

s(n) y(n) Equalizer z(n) + Threshold
h + +

D detector
w(n) (

Adaptive trained equalizer scheme

Function

F(z(n))

/4
s(n) y(n) Equalizer z(n) + Threshold
PEE— h + '\D’ =
H detector
w(n) (

Adaptive blind equalizer scheme
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Part 4: Second-Order Statistics based Algorithms ]
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Principle

@ Usually the algorithms rely on blind identification principle, i.e.,
retrieving the filter h = [h(0)T,---  h(L)™]"
@ Talk done with the stationary SIMO model

y(n) h(0) h(L) 0 s(n)
y(n — N) : 0 : h(0) - h(:L) s(n— N - L)
Yn(n) T(h) SnL(n)

with 7(h) a2(N + 1) x (N + L+ 1) Sylvester matrix

If h(3) # 0, V3 and N > L, then T (h) is full column rank and
left-invertible
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SOs

Covariance matrix algorithm

Question: what is the best second-order algorithm?

Let
@ R(h) = E[Yn(n)Yn(n)"] and Ry, = 5 30" Ya(n)Yn(n)"
® r(h) = [R{vec(R(h))}", I{vec(R(h))}']"

OfN

ubs:[é}%{vec( obs)}T {VeC( obs)}T]T

V obs("NobS - —> N(O rh)

i.e.,
i\.Nobs = r(h) + WN

obs

with wy,, . zero-mean Gaussian noise with covariance matrix 'n/Nops
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SOs

Covariance matching algorithm (cont’d)

Maximum-Likelihood based on ty,,, instead of data Y = Yy, (Nobs)

1 o - RN
N log(p(rNobs|h)) ~ _(rNobs - r(h))Trh ! (rNobs - r(h))
obs

log(det(I"
_ log(det(Th)) | o ciant

2N, obs

A 1 2
h., = arg mhin Hrh 2 (P, — r(h))H

with |[Wzx|[2 = xHWx

Ping-pong procedure for update ',
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SOs

Maximum Likelihood algorithm

Question: Maximum Likelihood based on Y

Y=T(h)S+W

with W white zero-mean Gaussian noise and unknown S

maxy, p(Y[h) = [ p(Y|h, S)p(S)dS

almost always untractable

TRUE ML

maxy p(Y|h) = [ p(Y|h,S)e SIS g
tractable but not optimal

GAUSSIAN ML

maxy s p(Y|h,S)

tractable but not optimal

DETERMINISTIC ML

Deterministic Maximum Likelihood

(h.S)we = argmin Y — T (h)S|®
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SOs

Maximum Likelihood algorithm (cont’d)

@ Minimization on S (without constraint):
Su = (T()*7T(h))~'T(h)"Y
@ Then minimization on h:
hy = argmin|| (Id — T(h)(T(h)"7(h)) "7 (h)") ¥||?

P

with P;- the projection on sp(7(h))*

hy = arg max h"Y¥(7 (h) "7 (h)) " Yh J

@ Quadratic cost function / Y = Second ordre is fine
@ Non-quadratic cost function / h = Ping-pong procedure
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SOs

Subspace algorithm: principle

Signal model:

Main required property:
sp(A(0)) = sp(A()) <= 0 =0/
Algorithm main step:

0=arg min distance(vect(y(n)). sp(A(0)))

Example 1 : source localization (MUSIC)

A(0) = [a(61),--- ,a(bp)]
with
@ a(f) =[1,e? " ... 2 (M=-1)9T (steering vector)
o M>p
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SOs

Subspace algorithm: application to blind equalization

Yn(n) = T(h)Sny.(n),

A<—T(h) and 6<+—h

Let 7(h’) be a Sylvester matrix associated with h’
If N> Landh(3) #0V; e C, then

sp(T(h")) = sp(7(h)) <= h" = oh

up to a constant «

Proof: using rational space or C[X]-module
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SOs

Subspace algorithm: practical implementation

White source = R = E[YY!"] = T(h)T(h)" = sp(R) = sp(7(h))

@ Let I be the projector on Ker(R) = Nx =0 iff x € sp(Ry)
@ Then h is the unique vector such that N7 (h) =0
@ In practice, R (resp. M) is estimated by R (resp. ).

hy, = arg min, IAT(h)|? = arg

min h"Qh
I h||=1
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SOs

Linear Prediction algorithm

If h1(3) and ho(3) have no common root, Bezout’s theorem holds:
J91(3), 92(3)] polynomials such that g1(3)h1(3) + g2(3) h2(3) = 1

@ Finite-degree MA = Finite-degree AR
@ y(n) AR process of order L with innovation i(n) = h(0)s(n), i.e.,

L

y(n) + Y _A(0)y(n—£) =i(n)

£=1

Algorithm implementation:
@ Solve Yule-Walker equations (to obtain A(¢) then h(¢))

Efi(nly(n— 1" ,y(n-L)"| =0

@ Estimate h(0) with the covariance matrix of the innovation
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Part 5: Other types of algorithms ]
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Semi-blind approach

Combining both criteria
@ DA (with training sequence)
@ blind/NDA (without training sequence)

as follows
J(h) = OéJNDA(h) + (1 — Ot)JDA(h)

Criteria selection (as an example):

@ Jpa(h): ML
@ Jnpa(h) : Subspace algorithm

Improve the estimation performance, or decrease the training duration
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Decision directed approach

DA approach followed by

@ NDA well initialized

e DD

— with hard decisions

— with soft decisions (turbo-estimation)
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Other

An other way: clustering based approach

(or a step towards Machine Learning)

y(n) = h's(n) +w(n)
N—_——
c(n)
with s(n) = [s(n),...,s(n— L)]" and h = [h(0),...,s(L)]"

@ y(n)is apointin C, and belongs to the cluster labelled by one ¢
@ K clusters to characterize (where K = card(c) is known)

@ Apply unsupervised clustering algorithm: K-means

@ Now, given ¢, how retrieving s(n) (with unknown h)

Hidden Markov Model (HMM) approach

@ s(n) is a Markov Chain:

Pr(s(n)|s(n—1),...) = Pr(s(n)|s(n— 1))
@ c(n) observation coming from an unknown Markov Chain state
@ Forward-Backward algorithm to retrieve h

Philippe Ciblat (Télécom ParisTech) Short overview on Blind Equalization



Other

An other way: clustering based approach

(or a step towards Machine Learning) (cont'd)

y(n) = fet(s(n)) + w(n) = §(n) = threshold (©(y(n)))
with
@ threshold : activation function
@ O(e): DNNweights(')

Questions:
@ One DNN per channel?
@ If yes, training step (so it is not a blind approach)
@ Gain in performance or less complex?

@ Some papers on Optical-Fiber communications (trained for one
fiber configuration)

@ One DNN available for a large set of fct?
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Simulations

Part 6: Numerical illustrations )
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Simulations

Second-order vs high-order algorithms

@ Random multipath channel
@ SIMO with oversampling of factor 2
@ Observation window 10007

£ £
8 8
H
3 3
g g
4
—p— Ajustement de covariance (perfs. theoriques) R —ay— Ajustement de covariance (perfs. theoriques) \
= A~ Algorithme du Module Constant (perfs empiriques) - A= Algorithme du Module Constant (perfs empiriques)
Egalisation de Wiener avec canal connu (perfs theoriques| Egalisation de Wiener avec canal connu (perfs theoriques|
-0~ Maximisation de Kurtosis (perfs empiriques) =0~ Maximisation de Kurtosis (perfs empiriques)
10° 109
5 10 15 20 30 5 10 15 20 30
Rapport Signal/Bruit (en dB) Rapport Signal-a-Bruit (RSB)

Figure: MSE vs SNR for 4QAM (left) and 16QAM (right) (courtesy of L. Mazet)
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Simulations

High-order algorithm (CMA)

10° T T T
no ISI
—6—[0.5, 0.5] (CMA)
é —4—1[0.25, 0.75] (CMA)

. - — © —[0.5,0.5] (no CMA)

1
10 o — & —[0.25, 0.75] (no CMA)

~<
102 A 3
E ~
[
109 ¢ E
\
\
N

- \

104k < 4
RS
10° :
0 2 4 6 8 10 12 14

Figure: BER vs SNR with 4QAM (warmup step of 1000 samples)
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Simulations

Time-varying channels

@ Stationary SISO model
@ 4QAM
@ 6-tap equalizer filter p

adaptive CMA performance adaptive GMA performance when tracking (SNR=10dB)
007 o
——— SNR=10d8] Tracking for gaussian perturbation with 0.5 as standard deviatio
——— SNR=15d| ‘Tracking for gaussian perturbation with 0.1 as standard devitio
006 025k
005
02 i
004f
& & ost
& & 015
003
(213
0.02
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time indexlteration Time index/iteration

Figure: BER vs iteration: h = [0.3, 0.86,0.39]" (left), h <— h + std x A/(0, 1) at time index 500,
1000 and 1500 (right)
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Simulations

Use-case: optical-fiber (simulations)

@ PolMux 16QAM, 112Gbits/s, range 1000km
@ CD=1000ps/nm

@ DGD=50ps
@ OSNR=20dB
10°
—— A-CMA, p=10"%
207 L BN —=— AN-CMA, u=10"°,5=10,
—e—BO-CMA
107}
i
&
10°}: S, |
1074 IS
0 50 Number o terations 20 0 T w00 Boo0 1000 12000

Length of the observation window

@ Blockwise algorithm converges with N = 1000 and few iterations
@ Adaptive algorithms need more samples to converge
@ BER target (010~2) satisfied
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Simulations

Use-case: optical-fiber (experimentation)

@ PolMux 8PSK, 60Gbits/s, range 800km
@ SSMF fiber
@ OSNR=23.7dB

——A-CMA, u=10
107 —=— AN-CMA, =10, 5= 10
—e—BO-CMA %
¥
) \K ;
107 .

0 2000
Le

4000 6000 8000 10000
ength of the observation window :

It works! )
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Ccl and Refs
Conclusion

@ Blind equalization works in pratice

@ HOS:

— No in-depth theoretical analysis
— Drawback: large observation window (not civilian application yet,
except optical fiber)

@ SOS:

— In-depth theoretical analysis (when N large enough)
— Easy to use, espcially when SIMO coming from spatial diversity

@ DNN?

Philippe Ciblat (Télécom ParisTech) Short overview on Blind Equalization 44 /45



References

D. Godard, "Self-recovering equalization and carrier tracking in two-dimensional
data communications systems”, IEEE Trans. on Communications, Nov. 1980.

O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of non-minimum
phase systems", IEEE Trans. on Information Theory, Mar. 1990.

A. Benveniste, M. Métivier and P. Priouret, "Adaptive algorithms and stochastic
approximations", Springer, 1990.

L. Tong, G. Xu and T. Kailath, "A new approach to blind identification and
equalization of multipath channels", Asilomar, 1991.

D. Slock, "Blind fractionally-spaced equalization, perfect-reconstruction filter
banks and multichannel linear predictor", ICASSP, 1994.

E. Moulines, P. Duhamel, J.F. Cardoso and S. Mayrargue, "Subspace method for
blind equalization of multichannel FIR filters", IEEE Trans. on Signal Processing,
Feb. 1995.

D. Boppana and S.S. Rao, “K-harmonic means clustering based blind
equalization in hostile environments”, GLOBECOM, 2003.

Z. Ding and G. Li, "Blind equalization and identification", Dekker, 2001.
P. Loubaton, "Signal et télécoms", Hermeés, 2004.

P. Comon and C. Jutten, "Handbook of Blind Source Separation, Independent
Component Analysis and Applications", Academic Press, 2010.

Philippe Ciblat (Télécom ParisTech) Short overview on Blind Equalization



	Introduction
	Statistics
	HOS
	SOS
	Other
	Simulations
	Ccl and Refs

