Quantum Recommendation Systems

Iordanis Kerenidis ${ }^{1}$ Anupam Prakash ${ }^{2}$
${ }^{1}$ CNRS, Université Paris Diderot, Paris, France, EU.
${ }^{2}$ Nanyang Technological University, Singapore.

$$
\text { April 4, } 2017
$$

The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.

The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle=\sum_{i} x_{i}|i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.

The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle=\sum_{i} x_{i}|i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.
- Given sparse matrix $A \in \mathbb{R}^{n \times n}$ and $|b\rangle$ there is a quantum algorithm to prepare $\left|A^{-1} b\right\rangle$ in time polylog(n). [Harrow, Hassidim, Lloyd]

The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle=\sum_{i} x_{i}|i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.
- Given sparse matrix $A \in \mathbb{R}^{n \times n}$ and $|b\rangle$ there is a quantum algorithm to prepare $\left|A^{-1} b\right\rangle$ in time polylog (n). [Harrow, Hassidim, Lloyd]
- Assumptions: $|b\rangle$ can be prepared $\operatorname{polylog}(n)$ time and A is polylog(n) sparse.

The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle=\sum_{i} x_{i}|i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.
- Given sparse matrix $A \in \mathbb{R}^{n \times n}$ and $|b\rangle$ there is a quantum algorithm to prepare $\left|A^{-1} b\right\rangle$ in time polylog (n). [Harrow, Hassidim, Lloyd]
- Assumptions: $|b\rangle$ can be prepared $\operatorname{polylog}(n)$ time and A is polylog(n) sparse.
- Incomparable to classical linear system solver which returns vector $x \in \mathbb{R}^{n}$ as opposed to $|x\rangle$.

Quantum Machine Learning

- HHL led to several proposals for quantum machine learning algorithms.

Quantum Machine Learning

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with $\ell_{2}-S V M s$, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]

Quantum Machine Learning

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_{2}-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.

Quantum Machine Learning

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_{2}-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.
- Sometimes a variant of the classical problem is solved: ℓ_{1} vs ℓ_{2}-SVM.

Quantum Machine Learning

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_{2}-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.
- Sometimes a variant of the classical problem is solved: ℓ_{1} vs ℓ_{2}-SVM.
- Incomparable with classical.

Quantum Recommendation Systems

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.

Quantum Recommendation Systems

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.

Quantum Recommendation Systems

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.

Quantum Recommendation Systems

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.
- An end to end application with no assumptions on the data set.

Quantum Recommendation Systems

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.
- An end to end application with no assumptions on the data set.
- Solves the 'same' problem as a classical recommendation system.

The Recommendation Problem

- The preference matrix P.

$\begin{array}{llllllll}P_{1} & P_{2} & P_{3} & P_{4} & \cdots & \cdots & P_{n-1} & P_{n}\end{array}$								
U_{1}	. 1	. 4	?	?	\cdots	\cdots	?	. 9
U_{2}	. 2	?	. 6	?	\cdots	\cdots	. 85	?
U_{3}	?	?	. 8	. 9	\ldots	\cdots	?	. 2
:	.	\ldots	\cdots	\cdots	\ldots
U_{m}	$?$. 75	$?$?	\ldots	\cdots	?	. 2

The Recommendation Problem

- The preference matrix P.

	P_{1}	P_{2}	P_{3}	P_{4}			P_{n-1}	P_{n}
U_{1}	. 1	. 4	?	?	\cdots	\cdots	?	. 9
U_{2}	. 2	?	. 6	?	\ldots	\cdots	. 85	?
U_{3}	?	?	. 8	. 9	\cdots	\ldots	?	. 2
\vdots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots
U_{m}	?	. 75	?	?	\cdots	\cdots	?	. 2

- $P_{i j}$ is the value of item j for user i. Samples from P arrive in an online manner.

The Recommendation Problem

- The preference matrix P.

	P_{1}	P_{2}	P_{3}	P_{4}			${ }_{n}$	P_{n}
U_{1}	. 1	. 4	?	?	\cdots	\ldots	?	. 9
U_{2}	. 2	?	. 6	?	\cdots	\cdots	. 85	?
U_{3}	?	?	. 8	. 9	\ldots	\cdots	?	. 2
;	\cdots	\cdots	\ldots	...	\cdots	\cdots
U_{m}	$?$. 75	?	?	\ldots	\cdots	?	. 2

- $P_{i j}$ is the value of item j for user i. Samples from P arrive in an online manner.
- The assumption that P has a good rank- k approximation for small k is widely used.

The Netflix Problem

Netutix Prize

COMPLETED

What we were interested in:

- High quality recommendations Proxy question:
- Accuracy in predicted rating
- Improve by $10 \%=\$ 1$ million!

$$
\mathrm{RMSE}=\sqrt{\frac{1}{n} \sum_{j=1}^{n}\left(y_{j}-\hat{y}_{j}\right)^{2}}
$$

SVD

- Top 2 algorithms still in production

RBM

Reconstruction vs sampling

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly $(m n)$.

Reconstruction vs sampling

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly $(m n)$.
- A reconstruction based recommendation system requires time poly (n), even with pre-computation.

Reconstruction vs sampling

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly $(m n)$.
- A reconstruction based recommendation system requires time poly (n), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.

Reconstruction vs sampling

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly $(m n)$.
- A reconstruction based recommendation system requires time poly (n), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.
- Quantum algorithms can perform matrix sampling.

Reconstruction vs sampling

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly $(m n)$.
- A reconstruction based recommendation system requires time poly (n), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.
- Quantum algorithms can perform matrix sampling.

Theorem

There is a quantum recommendation algorithm with running time $O($ poly (k) polylog $(m n)$).

Computational Model

- Samples from P arrive in an online manner and are stored in data structure with update time $O\left(\log ^{2} m n\right)$.

Computational Model

- Samples from P arrive in an online manner and are stored in data structure with update time $O\left(\log ^{2} m n\right)$.
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.

Computational Model

- Samples from P arrive in an online manner and are stored in data structure with update time $O\left(\log ^{2} m n\right)$.
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.

- We use the standard memory model used for algorithms like Grover search.

Computational Model

- Samples from P arrive in an online manner and are stored in data structure with update time $O\left(\log ^{2} m n\right)$.
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.

- We use the standard memory model used for algorithms like Grover search.
- Users arrive into system in an online manner and system provides recommendations in time poly (k) polylog ($m n$).

Singular value estimation

- The singular value decomposition for matrix A is written as $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$.

Singular value estimation

- The singular value decomposition for matrix A is written as $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$.
- The rank- k approximation $A_{k}=\sum_{i \in[k]} \sigma_{i} u_{i} v_{i}^{t}$ minimizes $\left\|A-A_{k}\right\|_{F}$.

Singular value estimation

- The singular value decomposition for matrix A is written as $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$.
- The rank- k approximation $A_{k}=\sum_{i \in[k]} \sigma_{i} u_{i} v_{i}^{t}$ minimizes $\left\|A-A_{k}\right\|_{F}$.
- Quantum singular value estimation:

Singular value estimation

- The singular value decomposition for matrix A is written as $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$.
- The rank- k approximation $A_{k}=\sum_{i \in[k]} \sigma_{i} u_{i} v_{i}^{t}$ minimizes $\left\|A-A_{k}\right\|_{F}$.
- Quantum singular value estimation:

Theorem

There is an algorithm with running time $O(p o l y \log (m n) / \epsilon)$ that transforms $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle \rightarrow \sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle$ where $\overline{\sigma_{i}} \in \sigma_{i} \pm \epsilon\|A\|_{F}$ with probability at least $1-1 / p o l y(n)$.

Matrix Sampling

- Let T be a $0 / 1$ matrix such that $T_{i j}=1$ if item j is 'good' recommendation for user i.

Matrix Sampling

- Let T be a $0 / 1$ matrix such that $T_{i j}=1$ if item j is 'good' recommendation for user i.

- Set the ?s to 0 and rescale to obtain a subsample matrix \widehat{T}.

Matrix Sampling

Figure: Matrix sampling based recommendation system.

Matrix Sampling

- T is the binary recommendation matrix obtained by rounding P.

Matrix Sampling

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T :

$$
\widehat{A}_{i j}= \begin{cases}A_{i j} / p & {[\text { with probability } p]} \\ 0 & {[\text { otherwise }]}\end{cases}
$$

Matrix Sampling

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T :

$$
\widehat{A}_{i j}= \begin{cases}A_{i j} / p & {[\text { with probability } p]} \\ 0 & {[\text { otherwise }]}\end{cases}
$$

- T_{k} and \widehat{T}_{k} are rank- k approximations for T and \widehat{T}.

Matrix Sampling

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T :

$$
\widehat{A}_{i j}= \begin{cases}A_{i j} / p & {[\text { with probability } p]} \\ 0 & {[\text { otherwise }]}\end{cases}
$$

- T_{k} and \widehat{T}_{k} are rank- k approximations for T and \widehat{T}.
- The low rank assumption implies that $\left\|T-T_{k}\right\| \leq \epsilon\|T\|_{F}$ for small k.

Matrix Sampling

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T :

$$
\widehat{A}_{i j}= \begin{cases}A_{i j} / p & {[\text { with probability } p]} \\ 0 & {[\text { otherwise }]}\end{cases}
$$

- T_{k} and \widehat{T}_{k} are rank- k approximations for T and \widehat{T}.
- The low rank assumption implies that $\left\|T-T_{k}\right\| \leq \epsilon\|T\|_{F}$ for small k.
- Analysis: Sampling from matrix 'close to' \widehat{T}_{k} yields good recommendations.

Analysis

- Samples from T_{k} are good recommendations, for large fraction of 'typical' users.

Analysis

- Samples from T_{k} are good recommendations, for large fraction of 'typical' users.
- Sampling from \widehat{T}_{k} suffices.

Analysis

- Samples from T_{k} are good recommendations, for large fraction of 'typical' users.
- Sampling from \widehat{T}_{k} suffices.

Theorem (AM02)

If \hat{A} is obtained from a $0 / 1$ matrix A by subsampling with probability $p=16 n / \eta\|A\|_{F}^{2}$ then with probability at least $1-\exp \left(-19(\log n)^{4}\right)$, for all k,

$$
\left\|A-\widehat{A}_{k}\right\|_{F} \leq\left\|A-A_{k}\right\|_{F}+3 \sqrt{\eta} k^{1 / 4}\|A\|_{F}
$$

Analysis

- The quantum algorithm samples from $\widehat{T}_{\geq \sigma, \kappa}$, a projection onto all singular values $\geq \sigma$ and some in the range $[(1-\kappa) \sigma, \sigma)$.

Analysis

- The quantum algorithm samples from $\widehat{T}_{\geq \sigma, \kappa}$, a projection onto all singular values $\geq \sigma$ and some in the range $[(1-\kappa) \sigma, \sigma)$.
- We extend AM02 to this setting showing that:

$$
\left\|T-\widehat{T}_{\sigma, \kappa}\right\|_{F} \leq 9 \epsilon\|T\|_{F}
$$

Analysis

- The quantum algorithm samples from $\widehat{T}_{\geq \sigma, \kappa}$, a projection onto all singular values $\geq \sigma$ and some in the range $[(1-\kappa) \sigma, \sigma)$.
- We extend $A M 02$ to this setting showing that:

$$
\left\|T-\widehat{T}_{\sigma, \kappa}\right\|_{F} \leq 9 \epsilon\|T\|_{F}
$$

- For most typical users, samples from $\left(\widehat{T}_{\sigma, \kappa}\right)_{i}$ are good recommendations with high probability.

Quantum Recommendation Algorithm

- Prepare state $\left|\widehat{T}_{i}\right\rangle$ corresponding to row for user i.

Quantum Recommendation Algorithm

- Prepare state $\left|\widehat{T}_{i}\right\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $\left|\widehat{T}_{i}\right\rangle$ to obtain $\left|\left(\hat{T}_{\geq \sigma, \kappa}\right)_{i}\right\rangle$.

Quantum Recommendation Algorithm

- Prepare state $\left|\widehat{T}_{i}\right\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $\left|\widehat{T}_{i}\right\rangle$ to obtain $\left|\left(\widehat{T}_{\geq \sigma, \kappa}\right)_{i}\right\rangle$.
- Measure projected state in computational basis to get recommendation.

Quantum Recommendation Algorithm

- Prepare state $\left|\widehat{T}_{i}\right\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $\left|\widehat{T}_{i}\right\rangle$ to obtain $\left|\left(\widehat{T}_{\geq \sigma, \kappa}\right)_{i}\right\rangle$.
- Measure projected state in computational basis to get recommendation.
- The threshold $\sigma=\frac{\epsilon \sqrt{ }\| \| A \|_{F}}{\sqrt{2 k}}$ and $\kappa=\frac{1}{3}$.

Quantum Recommendation Algorithm

- Prepare state $\left|\widehat{T}_{i}\right\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $\left|\widehat{T}_{i}\right\rangle$ to obtain $\left|\left(\widehat{T}_{\geq \sigma, \kappa}\right)_{i}\right\rangle$.
- Measure projected state in computational basis to get recommendation.
- The threshold $\sigma=\frac{\epsilon \sqrt{\mathcal{P}}\|A\|_{F}}{\sqrt{2 k}}$ and $\kappa=\frac{1}{3}$.
- Running time depends on the threshold and not the condition number.

The projection algorithm

- Let $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ be the singular value decomposition, write input $|x\rangle=\sum_{i} \alpha_{i}\left|v_{i}\right\rangle$.

The projection algorithm

- Let $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ be the singular value decomposition, write input $|x\rangle=\sum_{i} \alpha_{i}\left|v_{i}\right\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle$ to additive error $\kappa \sigma / 2$.

The projection algorithm

- Let $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ be the singular value decomposition, write input $|x\rangle=\sum_{i} \alpha_{i}\left|v_{i}\right\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle$ to additive error $\kappa \sigma / 2$.
- Map to $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle|t\rangle$ where $t=1$ if $\overline{\sigma_{i}} \geq(1-\kappa / 2) \sigma$ and erase $\overline{\sigma_{i}}$.

The projection algorithm

- Let $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ be the singular value decomposition, write input $|x\rangle=\sum_{i} \alpha_{i}\left|v_{i}\right\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle$ to additive error $\kappa \sigma / 2$.
- Map to $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle|t\rangle$ where $t=1$ if $\overline{\sigma_{i}} \geq(1-\kappa / 2) \sigma$ and erase $\bar{\sigma}{ }_{i}$.
- Post-select on $t=1$.

The projection algorithm

- Let $A=\sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ be the singular value decomposition, write input $|x\rangle=\sum_{i} \alpha_{i}\left|v_{i}\right\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle$ to additive error $\kappa \sigma / 2$.
- Map to $\sum_{i} \alpha_{i}\left|v_{i}\right\rangle\left|\overline{\sigma_{i}}\right\rangle|t\rangle$ where $t=1$ if $\overline{\sigma_{i}} \geq(1-\kappa / 2) \sigma$ and erase $\overline{\sigma_{i}}$.
- Post-select on $t=1$.
- The output $\left|A_{\geq \sigma, \kappa} x\right\rangle$ a projection the space of singular vectors with singular values $\geq \sigma$ and some in the range $[(1-\kappa) \sigma, \sigma)$.

Open Questions

- Find a classical algorithm matrix sampling based recommendation algorithm that runs in time $O($ poly (k) polylog $(m n))$.

OR

Prove a lower bound to rule out such an algorithm.

- Find more quantum machine learning algorithms.

