#### Iordanis Kerenidis<sup>1</sup> Anupam Prakash<sup>2</sup>

<sup>1</sup>CNRS, Université Paris Diderot, Paris, France, EU.

<sup>2</sup>Nanyang Technological University, Singapore.

April 4, 2017

Iordanis Kerenidis , Anupam Prakash Bristol, 2017

## The HHL algorithm

• Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.

・ 戸 ・ ・ ヨ ・ ・

## The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.
- Vector state  $|x\rangle = \sum_{i} x_i |i\rangle$  where  $x \in \mathbb{R}^n$  is a unit vector.

・ 同 ト ・ ヨ ト ・ ヨ ト

# The HHL algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.
- Vector state  $|x\rangle = \sum_{i} x_i |i\rangle$  where  $x \in \mathbb{R}^n$  is a unit vector.
- Given sparse matrix  $A \in \mathbb{R}^{n \times n}$  and  $|b\rangle$  there is a quantum algorithm to prepare  $|A^{-1}b\rangle$  in time polylog(n). [Harrow, Hassidim, Lloyd]

# The *HHL* Algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.
- Vector state  $|x\rangle = \sum_{i} x_i |i\rangle$  where  $x \in \mathbb{R}^n$  is a unit vector.
- Given sparse matrix  $A \in \mathbb{R}^{n \times n}$  and  $|b\rangle$  there is a quantum algorithm to prepare  $|A^{-1}b\rangle$  in time polylog(*n*). [Harrow, Hassidim, Lloyd]
- Assumptions: |b> can be prepared polylog(n) time and A is polylog(n) sparse.

# The *HHL* Algorithm

- Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.
- Vector state  $|x\rangle = \sum_{i} x_i |i\rangle$  where  $x \in \mathbb{R}^n$  is a unit vector.
- Given sparse matrix  $A \in \mathbb{R}^{n \times n}$  and  $|b\rangle$  there is a quantum algorithm to prepare  $|A^{-1}b\rangle$  in time polylog(n). [Harrow, Hassidim, Lloyd]
- Assumptions: |b> can be prepared polylog(n) time and A is polylog(n) sparse.
- Incomparable to classical linear system solver which returns vector x ∈ ℝ<sup>n</sup> as opposed to |x⟩.

イロト 不得 トイヨト イヨト 二日

• *HHL* led to several proposals for quantum machine learning algorithms.

(4回) (日) (

3 x 3

- *HHL* led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with l<sub>2</sub>-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]

・ 一 ・ ・ ・ ・ ・ ・

- *HHL* led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with l<sub>2</sub>-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

• Algorithms achieve exponential speedups only for sparse/well-conditioned data.

- *HHL* led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with l<sub>2</sub>-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.
- Sometimes a variant of the classical problem is solved:  $\ell_1$  vs  $\ell_2\text{-}\mathsf{SVM}.$

- *HHL* led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with l<sub>2</sub>-SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.
- Sometimes a variant of the classical problem is solved:  $\ell_1$  vs  $\ell_2\text{-}\mathsf{SVM}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Incomparable with classical.

• Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.

/⊒ ▶ < ∃ ▶ <

• Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Quantum recommendation systems.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.
- An end to end application with no assumptions on the data set.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.
- An end to end application with no assumptions on the data set.
- Solves the 'same' problem as a classical recommendation system.

高 と く ヨ と く ヨ と

#### The Recommendation Problem

• The preference matrix P.

|                       | $P_1$ | $P_2$ | $P_3$ | <i>P</i> <sub>4</sub> | ••• | •••   | $P_{n-1}$ | P <sub>n</sub> |
|-----------------------|-------|-------|-------|-----------------------|-----|-------|-----------|----------------|
| $U_1$                 | .1    | .4    | ?     | ?                     | ••• |       | ?         | .9             |
| <i>U</i> <sub>2</sub> | .2    | ?     | .6    | ?                     | ••• | •••   | .85       | ?              |
| U <sub>3</sub>        | ?     | ?     | .8    | .9                    |     | •••   | ?         | .2             |
| ÷                     |       |       | •••   |                       | ••• | •••   | •••       | •••            |
| Um                    | ?     | .75   | ?     | ?                     |     | • • • | ?         | .2             |

イロン 不同 とくほう イロン

э

Iordanis Kerenidis , Anupam Prakash Bristol, 2017

### The Recommendation Problem

• The preference matrix P.

|                | $P_1$ | $P_2$ | $P_3$ | $P_4$ | ••• | ••• | $P_{n-1}$ | Pn |
|----------------|-------|-------|-------|-------|-----|-----|-----------|----|
| $U_1$          | .1    | .4    | ?     | ?     | ••• | ••• | ?         | .9 |
| $U_2$          | .2    | ?     | .6    | ?     |     | ••• | .85       | ?  |
| U <sub>3</sub> | ?     | ?     | .8    | .9    | ••• | ••• | ?         | .2 |
| ÷              | • • • | •••   | •••   | • • • | ••• | ••• | •••       |    |
| U <sub>m</sub> | ?     | .75   | ?     | ?     |     | ••• | ?         | .2 |

• *P<sub>ij</sub>* is the value of item *j* for user *i*. Samples from *P* arrive in an online manner.

# The Recommendation Problem

• The preference matrix P.

|                | $P_1$ | $P_2$ | $P_3$ | $P_4$ | ••• | ••• | $P_{n-1}$ | P <sub>n</sub> |
|----------------|-------|-------|-------|-------|-----|-----|-----------|----------------|
| $U_1$          | .1    | .4    | ?     | ?     | ••• | ••• | ?         | .9             |
| $U_2$          | .2    | ?     | .6    | ?     |     | ••• | .85       | ?              |
| U <sub>3</sub> | ?     | ?     | .8    | .9    |     | ••• | ?         | .2             |
| ÷              | • • • | • • • | •••   |       |     | ••• | •••       | •••            |
| U <sub>m</sub> | ?     | .75   | ?     | ?     |     |     | ?         | .2             |

- *P<sub>ij</sub>* is the value of item *j* for user *i*. Samples from *P* arrive in an online manner.
- The assumption that *P* has a good rank-*k* approximation for small *k* is widely used.

Iordanis Kerenidis , Anupam Prakash Bristol, 2017

## The Netflix problem





#### What we were interested in:

High quality recommendations

#### Proxy question:

- Accuracy in predicted rating
- Improve by 10% = \$1million!



### Results

 Top 2 algorithms still in production

< A > <





 $\text{RMSE} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$ 



• Matrix reconstruction algorithms reconstruct  $\widetilde{P} \approx P$  using the low rank assumption and require time poly(*mn*).

- Matrix reconstruction algorithms reconstruct  $\tilde{P} \approx P$  using the low rank assumption and require time poly(*mn*).
- A reconstruction based recommendation system requires time poly(*n*), even with pre-computation.

- Matrix reconstruction algorithms reconstruct  $\tilde{P} \approx P$  using the low rank assumption and require time poly(*mn*).
- A reconstruction based recommendation system requires time poly(*n*), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.

- Matrix reconstruction algorithms reconstruct  $\tilde{P} \approx P$  using the low rank assumption and require time poly(*mn*).
- A reconstruction based recommendation system requires time poly(*n*), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.
- Quantum algorithms can perform matrix sampling.

- Matrix reconstruction algorithms reconstruct  $\tilde{P} \approx P$  using the low rank assumption and require time poly(*mn*).
- A reconstruction based recommendation system requires time poly(*n*), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.
- Quantum algorithms can perform matrix sampling.

#### Theorem

There is a quantum recommendation algorithm with running time O(poly(k)polylog(mn)).

(日本) (日本) (日本)

• Samples from *P* arrive in an online manner and are stored in data structure with update time  $O(\log^2 mn)$ .

- Samples from P arrive in an online manner and are stored in data structure with update time  $O(\log^2 mn)$ .
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.



- Samples from P arrive in an online manner and are stored in data structure with update time O(log<sup>2</sup> mn).
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.



• We use the standard memory model used for algorithms like Grover search.

- Samples from P arrive in an online manner and are stored in data structure with update time  $O(\log^2 mn)$ .
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.



- We use the standard memory model used for algorithms like Grover search.
- Users arrive into system in an online manner and system provides recommendations in time poly(k)polylog(mn).

Iordanis Kerenidis , Anupam Prakash Bristol, 2017

• The singular value decomposition for matrix A is written as  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ .

イロン 不同 とくほう イロン

• The singular value decomposition for matrix A is written as  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ .

• The rank-k approximation  $A_k = \sum_{i \in [k]} \sigma_i u_i v_i^t$  minimizes  $\|A - A_k\|_F$ .

• The singular value decomposition for matrix A is written as  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ .

◆□ > ◆□ > ◆□ > ◆□ > ● □

- The rank-k approximation  $A_k = \sum_{i \in [k]} \sigma_i u_i v_i^t$  minimizes  $\|A A_k\|_F$ .
- Quantum singular value estimation:

- The singular value decomposition for matrix A is written as  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$ .
- The rank-k approximation  $A_k = \sum_{i \in [k]} \sigma_i u_i v_i^t$  minimizes  $\|A A_k\|_F$ .
- Quantum singular value estimation:

#### Theorem

There is an algorithm with running time  $O(\text{polylog}(mn)/\epsilon)$  that transforms  $\sum_i \alpha_i |v_i\rangle \rightarrow \sum_i \alpha_i |v_i\rangle |\overline{\sigma_i}\rangle$  where  $\overline{\sigma_i} \in \sigma_i \pm \epsilon ||A||_F$  with probability at least 1 - 1/poly(n).

イロト 不得 トイヨト イヨト 二日

• Let T be a 0/1 matrix such that  $T_{ij} = 1$  if item j is 'good' recommendation for user *i*.

|                       | $r_1$   | <b>r</b> 2 | <b>r</b> 3 | Γ4  | ••• | ••• | r_n-1 | rn |
|-----------------------|---------|------------|------------|-----|-----|-----|-------|----|
| $U_1$                 | 0       | 0          | ?          | ?   |     |     | ?     | 1  |
| <i>U</i> <sub>2</sub> | 0       | ?          | 0          | ?   | ••• | ••• | 1     | ?  |
| U <sub>3</sub>        | ?       | ?          | 1          | 1   | ••• | ••• | ?     | 0  |
| ÷                     | • • • • | •••        | •••        | ••• | ••• | ••• | •••   |    |
| Um                    | ?       | 1          | ?          | ?   | ••• | ••• | ?     | 0  |

D, D

・ロト ・回ト ・ヨト ・ヨト

3

Iordanis Kerenidis , Anupam Prakash

Bristol, 2017

• Let T be a 0/1 matrix such that  $T_{ij} = 1$  if item j is 'good' recommendation for user i.

|       | $P_1$ | $P_2$ | $P_3$ | $P_4$ |     | ••• | $P_{n-1}$ | $P_n$ |
|-------|-------|-------|-------|-------|-----|-----|-----------|-------|
| $U_1$ | 0     | 0     | ?     | ?     | ••• | ••• | ?         | 1     |
| $U_2$ | 0     | ?     | 0     | ?     |     | ••• | 1         | ?     |
| $U_3$ | ?     | ?     | 1     | 1     |     | ••• | ?         | 0     |
| ÷     | • • • | •••   | •••   |       |     | ••• |           |       |
| Um    | ?     | 1     | ?     | ?     |     |     | ?         | 0     |

П

3

• Set the ?s to 0 and rescale to obtain a *subsample* matrix  $\hat{T}$ .

Iordanis Kerenidis , Anupam Prakash

Bristol, 2017



FIGURE: Matrix sampling based recommendation system.

Iordanis Kerenidis , Anupam Prakash Bristol, 2017

• *T* is the binary recommendation matrix obtained by rounding *P*.

・ロト ・ 一 ト ・ モ ト ・ モ ト

э

- *T* is the binary recommendation matrix obtained by rounding *P*.
- $\widehat{T}$  is a uniform subsample of T:

$$\widehat{A}_{ij} = \begin{cases} A_{ij}/p \\ 0 \end{cases}$$

[with probability p] [otherwise]

A B > A B > A B >

- *T* is the binary recommendation matrix obtained by rounding *P*.
- $\widehat{T}$  is a uniform subsample of T:

$$\widehat{A}_{ij} = \begin{cases} A_{ij}/p \\ 0 \end{cases}$$

[with probability *p*] [otherwise]

イロン 不同 とくほう イロン

•  $T_k$  and  $\hat{T}_k$  are rank-k approximations for T and  $\hat{T}$ .

- *T* is the binary recommendation matrix obtained by rounding *P*.
- $\widehat{T}$  is a uniform subsample of T:

$$\widehat{A}_{ij} = \begin{cases} A_{ij}/p \\ 0 \end{cases}$$

[with probability *p*] [otherwise]

・ 同 ト ・ ヨ ト ・ ヨ ト

- $T_k$  and  $\hat{T}_k$  are rank-k approximations for T and  $\hat{T}$ .
- The low rank assumption implies that  $||T T_k|| \le \epsilon ||T||_F$  for small k.

- *T* is the binary recommendation matrix obtained by rounding *P*.
- $\hat{T}$  is a uniform subsample of T:

$$\widehat{A}_{ij} = egin{cases} A_{ij}/p & [ ext{with probability } p] \ 0 & [ ext{otherwise}] \end{cases}$$

- $T_k$  and  $\hat{T}_k$  are rank-k approximations for T and  $\hat{T}$ .
- The low rank assumption implies that  $||T T_k|| \le \epsilon ||T||_F$  for small k.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

• Analysis: Sampling from matrix 'close to'  $\widehat{T}_k$  yields good recommendations.



• Samples from *T<sub>k</sub>* are good recommendations, for large fraction of 'typical' users.

・ロト ・回ト ・ヨト ・ヨト

э

• Samples from *T<sub>k</sub>* are good recommendations, for large fraction of 'typical' users.

・ロト ・四ト ・ヨト ・ヨト

3

• Sampling from  $\hat{T}_k$  suffices.

- Samples from  $T_k$  are good recommendations, for large fraction of 'typical' users.
- Sampling from  $\hat{T}_k$  suffices.

#### THEOREM (AM02)

If  $\widehat{A}$  is obtained from a 0/1 matrix A by subsampling with probability  $p = 16n/\eta ||A||_F^2$  then with probability at least  $1 - exp(-19(\log n)^4)$ , for all k,

$$||A - \widehat{A}_k||_{\mathsf{F}} \leq ||A - A_k||_{\mathsf{F}} + 3\sqrt{\eta}k^{1/4}||A||_{\mathsf{F}}$$

< □ > < 同 > < 臣 > < 臣 > □ Ξ

• The quantum algorithm samples from  $\widehat{T}_{\geq \sigma,\kappa}$ , a projection onto all singular values  $\geq \sigma$  and some in the range  $[(1 - \kappa)\sigma, \sigma)$ .

- The quantum algorithm samples from  $\widehat{T}_{\geq \sigma,\kappa}$ , a projection onto all singular values  $\geq \sigma$  and some in the range  $[(1 \kappa)\sigma, \sigma)$ .
- We extend AM02 to this setting showing that:

$$||T - \widehat{T}_{\sigma,\kappa}||_{F} \le 9\epsilon ||T||_{F}$$

▲ 同 ▶ ▲ 国 ▶

- The quantum algorithm samples from  $\widehat{T}_{\geq \sigma,\kappa}$ , a projection onto all singular values  $\geq \sigma$  and some in the range  $[(1 \kappa)\sigma, \sigma)$ .
- We extend AM02 to this setting showing that:

$$||T - \widehat{T}_{\sigma,\kappa}||_F \le 9\epsilon ||T||_F$$

• For most typical users, samples from  $(\hat{T}_{\sigma,\kappa})_i$  are good recommendations with high probability.

• Prepare state  $|\hat{T}_i\rangle$  corresponding to row for user *i*.

Iordanis Kerenidis , Anupam Prakash Bristol, 2017

▲ 同 ▶ → 目 ▶

- Prepare state  $|\hat{T}_i\rangle$  corresponding to row for user *i*.
- Apply quantum projection algorithm to  $|\hat{T}_i\rangle$  to obtain  $|(\hat{T}_{\geq\sigma,\kappa})_i\rangle$ .

- Prepare state  $|\hat{T}_i\rangle$  corresponding to row for user *i*.
- Apply quantum projection algorithm to  $|\hat{T}_i\rangle$  to obtain  $|(\hat{T}_{\geq\sigma,\kappa})_i\rangle$ .
- Measure projected state in computational basis to get recommendation.

▲ □ ▶ ▲ □ ▶ ▲

- Prepare state  $|\hat{T}_i\rangle$  corresponding to row for user *i*.
- Apply quantum projection algorithm to  $|\hat{T}_i\rangle$  to obtain  $|(\hat{T}_{\geq\sigma,\kappa})_i\rangle$ .
- Measure projected state in computational basis to get recommendation.

• The threshold  $\sigma = \frac{\epsilon \sqrt{\rho} ||A||_F}{\sqrt{2k}}$  and  $\kappa = \frac{1}{3}$ .

- Prepare state  $|\hat{T}_i\rangle$  corresponding to row for user *i*.
- Apply quantum projection algorithm to  $|\hat{T}_i\rangle$  to obtain  $|(\hat{T}_{\geq\sigma,\kappa})_i\rangle$ .
- Measure projected state in computational basis to get recommendation.
- The threshold  $\sigma = \frac{\epsilon \sqrt{p} ||A||_F}{\sqrt{2k}}$  and  $\kappa = \frac{1}{3}$ .
- Running time depends on the threshold and not the condition number.

#### THE PROJECTION ALGORITHM

• Let  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$  be the singular value decomposition, write input  $|x\rangle = \sum_{i} \alpha_{i} |v_{i}\rangle$ .

ヘロト ヘヨト ヘヨト ヘヨト

#### THE PROJECTION ALGORITHM

- Let  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$  be the singular value decomposition, write input  $|x\rangle = \sum_{i} \alpha_{i} |v_{i}\rangle$ .
- Estimate singular values  $\sum_{i} \alpha_i |\mathbf{v}_i\rangle |\overline{\sigma_i}\rangle$  to additive error  $\kappa \sigma/2$ .

- < 回 > < 注 > < 注 > … 注

#### THE PROJECTION ALGORITHM

- Let  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$  be the singular value decomposition, write input  $|x\rangle = \sum_{i} \alpha_{i} |v_{i}\rangle$ .
- Estimate singular values  $\sum_{i} \alpha_{i} |\mathbf{v}_{i}\rangle |\overline{\sigma_{i}}\rangle$  to additive error  $\kappa \sigma/2$ .
- Map to  $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle |t\rangle$  where t = 1 if  $\overline{\sigma_{i}} \ge (1 \kappa/2)\sigma$  and erase  $\overline{\sigma_{i}}$ .

|→ ◎→ → 注→ → 注→ → 注

- Let  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$  be the singular value decomposition, write input  $|x\rangle = \sum_{i} \alpha_{i} |v_{i}\rangle$ .
- Estimate singular values  $\sum_{i} \alpha_{i} |\mathbf{v}_{i}\rangle |\overline{\sigma_{i}}\rangle$  to additive error  $\kappa \sigma/2$ .
- Map to  $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle |t\rangle$  where t = 1 if  $\overline{\sigma_{i}} \ge (1 \kappa/2)\sigma$  and erase  $\overline{\sigma_{i}}$ .

- ( 同 ) ( 回 ) ( 回 ) - 回

• Post-select on t = 1.

- Let  $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$  be the singular value decomposition, write input  $|x\rangle = \sum_{i} \alpha_{i} |v_{i}\rangle$ .
- Estimate singular values  $\sum_{i} \alpha_{i} |\mathbf{v}_{i}\rangle |\overline{\sigma_{i}}\rangle$  to additive error  $\kappa \sigma/2$ .
- Map to  $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle |t\rangle$  where t = 1 if  $\overline{\sigma_{i}} \ge (1 \kappa/2)\sigma$  and erase  $\overline{\sigma_{i}}$ .
- Post-select on t = 1.
- The output  $|A_{\geq \sigma,\kappa}x\rangle$  a projection the space of singular vectors with singular values  $\geq \sigma$  and some in the range  $[(1 \kappa)\sigma, \sigma)$ .

イロト 不得 トイヨト イヨト 二日

# OPEN QUESTIONS

 Find a classical algorithm matrix sampling based recommendation algorithm that runs in time O(poly(k)polylog(mn)).

#### OR

・ 同 ト ・ ヨ ト ・ ヨ ト

Prove a lower bound to rule out such an algorithm.

• Find more quantum machine learning algorithms.