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Motivations

• Optimal transport is a perfect tool to compare empirical 
probability distributions 

• In the context of machine learning/signal processing, one 
often has to deal with collections of samples that can be 
interpreted as probability distributions
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Motivations

• I will showcase 2 successful examples of application of OT in 
the contexte of machine learning and signal processing 

• First one: OT for transfer learning (domain adaptation)

• using the coupling to interpolate multidimensional data 

• special note on the out-of-sample problem  

• Second: OT for music transcription

• using the metric to adapt to the specificity of the data



Forenote on implementation

• All these examples have been implemented using  

POT, the Python Optimal Transport toolbox 

• Available here :  https://github.com/rflamary/POT 

• Some use cases will be given along the examples 

https://github.com/rflamary/POT


Optimal Transport for domain adaptation

introduction to domain adaptation 
regularization helps 
out of samples formulation

Joint work with Rémi Flamary, Devis Tuia, Alain Rakotomamonjy, Michael Perrot, Amaury Habrard



Domain Adaptation problem

Traditional machine learning hypothesis

I We have access to training data.

I Probability distribution of the training set and the testing are the same.

I We want to learn a classifier that generalizes to new data.

Our context

I Classification problem with data coming from di↵erent sources (domains).

I Distributions are di↵erent but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

I Labels only available in the source domain, and classification is conducted in the target
domain.

I Classifier trained on the source domain data performs badly in the target domain



Domain adaptation short state of the art

Reweighting schemes [Sugiyama et al., 2008]

I Distribution change between domains.

I Reweigh samples to compensate this change.

Subspace methods

I Data is invariant in a common latent subspace.

I Minimization of a divergence between the projected
domains [Si et al., 2010].

I Use additional label information [Long et al., 2014].

Gradual alignment

I Alignment along the geodesic between source and
target subspace [R. Gopalan and Chellappa, 2014].

I Geodesic flow kernel [Gong et al., 2012].



Generalization error in domain adaptation

Theoretical bounds [Ben-David et al., 2010]

The error performed by a given classifier in the target domain is upper-bounded by the sum of
three terms :

I Error of the classifier in the source domain;

I Divergence measure between the two pdfs in the two domains;

I A third term measuring how much the classification tasks are related to each other.

Our proposal [Courty et al., 2016]

I Model the discrepancy between the distribution through a general transformation.

I Use optimal transport to estimate the transportation map between the two distributions.

I Use regularization terms for the optimal transport problem that exploits labels from the
source domain.



Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

I There exist a transport T between the source and target domain.

I The transport preserves the conditional distributions:
Ps(y|xs) = Pt(y|T(xs)).

3-step strategy
1. Estimate optimal transport between distributions.

2. Transport the training samples onto the target distribution.

3. Learn a classifier on the transported training samples.
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Optimal transport for empirical distributions

Empirical distributions
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I The cost is set to the squared Euclidean distance Ci,j = kxs
i � x

t
jk2.

I Same optimization problem, di↵erent C.



E�cient regularized optimal transport

Transportation cost matric C Optimal matrix γ (Sinkhorn)

Entropic regularization [Cuturi, 2013]

��
0 = argmin

�2P
h�,CiF � �h(�), (5)

where h(�) = �P

i,j �(i, j) log �(i, j) computes the entropy of �.

I Entropy introduces smoothness in ��
0 .

I Sinkhorn-Knopp algorithm (e�cient implementation in parallel, GPU).

I General framework using Bregman projections [Benamou et al., 2015].



Transporting the discrete samples

Barycentric mapping [Ferradans et al., 2014]

I The mass of each source sample is spread onto the target samples (line of �0).

I The source samples becomes a weighted sum of dirac (impractical for ML).

I We estimate the transported position for each source with:

c

x

s
i = argmin

x

X

j

�0(i, j)c(x,x
t
j). (6)

I Position of the transported samples for squared Euclidean loss:

ˆ

Xs = diag(�01nt )
�1�0Xt and ˆ

Xt = diag(�>
0 1ns )

�1�>
0 Xs. (7)
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Regularization for domain adaptation

Optimization problem

min

�2P
h�,CiF + �⌦s(�) + ⌘⌦(�), (8)

where

I
⌦s(�) Entropic regularization [Cuturi, 2013].

I ⌘ � 0 and ⌦c(·) is a DA regularization term.

I Regularization to avoid overfitting in high dimension and encode additional information.

Regularization terms for domain adaptation ⌦(�)

I Class based regularization [Courty et al., 2014] to encode the source label information.

I Graph regularization [Ferradans et al., 2014] to promote local sample similarity
conservation.

I Semi-supervised regularization when some target samples have known labels.



Entropic regularization

Entropic regularization [Cuturi, 2013]

⌦s(�) =
X

i,j

�(i, j) log �(i, j)

I Extremely e�cient optimization scheme (Sinkhorn Knopp).

I Solution is not sparse anymore due to the regularization.

I Strong regularization force the samples to concentrate on the center of mass of the
target samples.
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Class-based regularization

Group lasso regularization [Courty et al., 2016]

I We group components of � using classes from the source domain:

⌦c(�) =
X

j

X

c

||�(Ic, j)||pq , (9)

I Ic contains the indices of the lines related to samples of the class c in the source domain.

I || · ||pq denotes the `q norm to the power of p.

I For p  1, we encourage a target domain sample j to receive masses only from “same
class” source samples.



Class-based regularization

Group lasso regularization [Courty et al., 2016]

I We group components of � using classes from the source domain:

⌦c(�) =
X

j

X

c

||�(Ic, j)||pq , (9)

I Ic contains the indices of the lines related to samples of the class c in the source domain.

I || · ||pq denotes the `q norm to the power of p.

I For p  1, we encourage a target domain sample j to receive masses only from “same
class” source samples.



Optimization problem

min

�2P
h�,CiF + �⌦s(�) + ⌘⌦(�),

Special cases

I ⌘ = 0: Sinkhorn Knopp [Cuturi, 2013].

I � = 0 and Laplacian regularization: Large quadratic program solved with conditionnal
gradient [Ferradans et al., 2014].

I Non convex group lasso `p � `1: Majoration Minimization with Sinkhorn Knopp
[Courty et al., 2014].

General framework with convex regularization ⌦(�)

I Can we use e�cient Sinkhorn Knopp scaling to solve the global problem?

I Yes using generalized conditional gradient [Bredies et al., 2009].

I Linearization of the second regularization term but not the entropic regularization.



Simulated problem with controllable complexity

Two moons problem [Germain et al., 2013]

I Two entangled moons with a rotation
between domains.

I The rotation angle allow a control of the
adaptation di�culty.

I Comparison with Domain Adaptation
SVM[Bruzzone and Marconcini, 2010]
and [Germain et al., 2013].

OT domain adaptation:

I OT-exact non-regularized OT.

I OT-IT Entropic reg.

I OT-GL Group-lasso + entropic reg.

I OT-Lap Laplacian + entropic reg.



Results on the two moons dataset

10� 20� 30� 40� 50� 70� 90�

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM 0 0 0.259 0.284 0.334 0.747 0.820
PBDA 0 0.094 0.103 0.225 0.412 0.626 0.687

OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507
OT-IT 0 0.007 0.054 0.102 0.221 0.398 0.508
OT-GL 0 0 0 0.013 0.196 0.378 0.508
OT-Lap 0 0 0.004 0.062 0.201 0.402 0.524

Discussion

I Average prediction error for adaptation from 10

� to 90

�.
I Clear advantage of the optimal transport techniques.

I Regularization helps (a lot) up to 40

�.
I

90

� is the theoretical limit (positive definite Jacobian of the transformation).



Results on the two moons dataset

(a) rotation=10� (b) rotation=30� (c) rotation=50� (d) rotation=70�

Discussion

I Average prediction error for adaptation from 10

� to 90

�.
I Clear advantage of the optimal transport techniques.

I Regularization helps (a lot) up to 40

�.
I

90

� is the theoretical limit (positive definite Jacobian of the transformation).



Visual adaptation datasets

Datasets
I Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

I Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

I Object recognition, Caltech-O�ce dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments
I Comparison with state of the art on the 3 datasets.

I Comparison on object recognition with deep invariant features.

I Semi supervised extension.



Comparison on vision datasets

Datasets Digits Faces Objects
Methods ACC Nb best ACC Nb best ACC Nb best
1NN 48.66 0 26.22 0 28.47 0
PCA 42.94 0 34.55 0 37.98 0
GFK 52.56 0 26.15 0 39.21 0
TSL 47.22 0 36.10 0 42.97 1
JDA 57.30 0 56.69 7 44.34 1

OT-exact 49.96 0 50.47 0 36.69 0
OT-IT 59.20 0 54.89 0 42.30 0
OT-Lap 61.07 0 56.10 3 43.20 0
OT-LpLq 64.11 1 55.45 0 46.42 1
OT-GL 63.90 1 55.88 2 47.70 9

Discussion

I We report mean accuracy (ACC) and the number of time the method have been the best
among all possible adaptation pairs.

I OT works very well on digits and object recognition (+7% and +3% wrt JDA).

I Good but not best on face recognition (-.5% wrt JDA).
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Mapping estimation for discrete optimal transport

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Why estimate the mapping?

I Out of sample problem.

I Solving optimization problem every time the dataset changes.

I Transporting a very large number of samples.

I Interpretability (depending on the mapping model).

How to estimate the mapping ?

I Go back to Monge formulation? No!

I Can use the barycentric mapping on the data samples.

I We want to fit the barycentric mapping but also introduce smoothness.



Mapping estimation

Problem formulation [Perrot et al., 2016]

argmin

T2H,�2P
f(�, T ) = �� h�,CiF

| {z }

OT loss

+ kT (Xs)� ns�Xtk2F
| {z }

Mapping data fitting

+ �TR(T )

| {z }

Mapping reg.

(10)

where

I
Xs = [x

s
1, . . . ,x

s
ns

]

> and Xt = [x

t
1, . . . ,x

t
nt

]

> are the source and target datasets,

I T (·) is applied for each elements of the above matrices,

I ns�Xt is the barycentric mapping for source samples with uniform weights,

I H is the space of transformations (more details later),

I R(·) is a regularization term controlling the complexity of T .

Convexity and optimization

I Problem (10) is jointly convex if R(·) is convex and H is a convex set.

I We propose to use a block coordinate descent to solve the problem.



Mapping estimation interpretation

Regression problem

argmin

T2H,�2P
f(�, T ) = �� h�,CiF + kT (Xs)� ns�Xtk2F

| {z }

Data fitting

+ �TR(T )

| {z }

Regularization
I Mapping aim at fitting the barycentric mapping.

I Allow for a mapping model that can be reused (out of sample).

I Can we do OT then estimation [Perrot and Habrard, 2015]?

Regularized optimal transport

argmin

T2H,�2P
f(�, T ) = �� h�,CiF

| {z }

OT loss

+ kT (Xs)� ns�Xtk2F + �TR(T )

| {z }

OT regularizationI Adapt OT to the mapping .

I Model based regularization for OT.



Mapping family H

Linear transformations

H =

n

T : 8x 2 ⌦, T (x) = x

T
L

o

. (11)

I
L is a d⇥ d real matrix.

I R(T ) = kL� Ik2F where I is the identity matrix.

I Update is a classical linear least square regression.

Nonlinear transformations

H =

n

T : 8x 2 ⌦, T (x) = k
Xs (x

T
)L

o

(12)

I k
Xs (x

T
) =

�

k(x,xs
1) k(x,xs

2) · · · k(x,xs
ns

)

�

.

I k(·, ·) is a positive definite kernel.

I
L is a ns ⇥ d real matrix.

I Update is a classical kernel least square regression.

For both models we can add a bias to get a�ne transformations.



Illustrative example

Clown 2D dataset

I Clearly a non-linear mapping.

I The mapping model can control the barycentric mapping.



Domain adaptation: Caltech-O�ce dataset

Task 1NN GFK SA OT L1L2 OTE
OTLin OTLinB OTKer OTKerB
T � T � T � T �

D ! W 89.5 93.3 95.6 77.0 95.7 95.7 97.3 97.3 97.3 97.3 98.4 98.5 98.5 98.5
D ! A 62.5 77.2 88.5 70.8 74.9 74.8 85.7 85.7 85.8 85.8 89.9 89.9 89.5 89.5
D ! C 51.8 69.7 79.0 68.1 67.8 68.0 77.2 77.2 77.4 77.4 69.1 69.2 69.3 69.3
W ! D 99.2 99.8 99.6 74.1 94.4 94.4 99.4 99.4 99.8 99.8 97.2 97.2 96.9 96.9
W ! A 62.5 72.4 79.2 67.6 71.3 71.3 81.5 81.5 81.4 81.4 78.5 78.3 78.5 78.8
W ! C 59.5 63.7 55.0 63.1 67.8 67.8 75.9 75.9 75.4 75.4 72.7 72.7 65.1 63.3
A ! D 65.2 75.9 83.8 64.6 70.1 70.5 80.6 80.6 80.4 80.5 65.6 65.5 71.9 71.5
A ! W 56.8 68.0 74.6 66.8 67.2 67.3 74.6 74.6 74.4 74.4 66.4 64.8 70.0 68.9
A ! C 70.1 75.7 79.2 70.4 74.1 74.3 81.8 81.8 81.6 81.6 84.4 84.4 84.5 84.5
C ! D 75.9 79.5 85.0 66.0 69.8 70.2 87.1 87.1 87.2 87.2 70.1 70.0 78.6 78.6
C ! W 65.2 70.7 74.4 59.2 63.8 63.8 78.3 78.3 78.5 78.5 80.0 80.4 73.5 73.4
C ! A 85.8 87.1 89.3 75.2 76.6 76.7 89.9 89.9 89.7 89.7 82.4 82.2 83.6 83.5
Mean 70.3 77.8 81.9 68.6 74.5 74.6 84.1 84.1 84.1 84.1 79.6 79.4 80.0 79.7

Discussion

I Visual adaptation on DA deep learning features (decaf6 [Donahue et al., 2014])

I Parameter validation performed using circular validation.

I Clear advantage to the mapping estimation methods.



Seamless copy in images

Poisson image editing [Pérez et al., 2003]
I Let ft be the target image and fs the source image and a region of the image ⌦.

I Poisson editing aim at solving f with Dirichlet boundary conditions

min

f

Z Z

⌦
|rf � v|2 with f |@⌦ = ft|@⌦. (13)

I Here v = rfs|⌦ is given as the gradient from the source image fs over ⌦.

I Equivalent so solving the following Poisson equation [Pérez et al., 2003]

�f = div v over ⌦, with f |@⌦ = ft|@⌦. (14)

I Using first order discretization, the problem is a large sparse linear system.
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Seamless copy with gradient adaptation

Poisson image editing with gradient adaptation

I Poisson image editing leads to false colors in practice.

I We propose to adapt the gradients from the source to the target domain:

�f = div Ts!t(v) over ⌦, with f |@⌦ = ft|@⌦. (15)

I Ts!t : R6 ! R6 is the mapping between gradients of the source and target images in
the domain.
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Optimal Transport for music transcription

introduction to problem 
a solution with OT 
some results

Joint work with Rémi Flamary, Cédric Févotte, Valentin Emiya 



Automatic music transcription : tracking note spectra



Short-term spectrum of notes



Baseline: PLCA (Smaragdis et al., 2006)

(from Smaragdis 2013)
Estimate transcription H = [h1, . . . , hN ] 2 RK⇥N

+ from V 2 RM⇥N
+ and

W 2 RM⇥K
+ by solving

min
H�0

DKL (V |WH ) s.t. 8n, khnk1 = 1

where DKL (v |bv ) =
P

i vi log (vi/bvi ) and DKL

⇣

V
�

�

�

bV
⌘

=
P

n DKL (vn |bvn )



Comparing two note spectra



Comparing note spectra with usual metrics

Usual metrics (Euclidean, KL, IS) are
separable:

dp (u, v) =
X

i

|ui � vi |p

dKL (u, v) =
X

i

ui log (ui/vi )

Separability is good for designing
solvers like PLCA, but...
Actual comparison: frequency-wise, variability in amplitudes.
Any variability in frequency is measured frequency-wise as a variability in
amplitude. Some partials of a true note may be missed

I the true note may not be well estimated
I other notes may be estimated: octave, fifth, and so on



Variability in frequency and amplitude

I Variability in f0 due to tuning
I Variability in peak shape due

window choice
I Variability in peak shape due to

modulations
I f0 modulation: varying pitch
I beats due to multiple string
I notes at unisson from various

players
I Variability in frequency

distribution due to
inharmonicity

fh = hf0
p

1 + �h2

I Variability in amplitudes due to
timber

I Variability in amplitudes in time
due to attenuation and beats

(zoom)



Optimal Transport for music transcription

introduction to problem 
a solution with OT 
some results



Objective: finding the optimal transport from u to v

Let us consider two vectors u and v to be compared by OT (e.g., two magnitude
spectra). What is the best way to transport energy from u to v?
Main issues:

1. how to transport energy from u to v?
! using a transportation matrix T.

2. what does it cost?

! specify a (unitary-)cost matric C.

3. how to find the optimal transportation

! by solving a linear program.



Transportation matrices T

Let u 2 RNu
+ and v 2 RNv

+ such that kuk1 = kvk1 = 1.
We want to transport u to v.
Let tij the part of ui transported to vj :

vj

0.1

0.3

0.2

0

0.10 0 0.1

T

0.5

0.6v

i

u

ui0.1

j

Transportation from u to v is valid iff
I For any i , ui is distributed among all vj ’s:

P

j tij = ui , i.e., T1Nv = u.
I For any j , all contributions to vj sum up to vj :

P

i tij = vj , i.e., TT1Nu = v.

Definition: set of transportation matrices for (u, v)

⇥ ,
n

T 2 RNu⇥Nv
+ : T1Nv = u and TT1Nu = v

o
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Cost matrices C

Let cij � 0 be the cost to transport one unit from ui to vj : one may choose all
cij ’s and gather them into a matrix C 2 RNu⇥Nv

+ .
Examples to compare two spectra:

Quadratic cost C2 (log scale)

j = 1 . . . 100

i
=

1
..
.1
00

cij = |fi � fj |p (p > 0)
Only allows local displacements

Harmonic cost Ch (log scale)

j = 1 . . . 100
i
=

1
..
.1
00

Allows displacement of observed
energy to any possible f0 candidate

! Transporting tij from ui to vj costs cij tij



Optimal transportation divergence as a optimization problem

Given a cost matrix C, how to find the optimal transportation from u to v?
! Find T 2 ⇥ such that the total cost

P

ij cij tij is minimal.

Optimal transportation divergence

DC (u |v ) , min
T�0

hT,Ci s.t. T1Nv = u and TT1Nu = v

where hT,Ci = P

ij cij tij .

I This is a linear program with convex constraints.
I Computing DC (u |v ) implies solving an optimization problem
I Particular case cij = |fi � fj |p: DC (u |v ) is a metric called Wasserstein

distance or earth mover’s distance.
I In the general case, DC (u |v ) is not a metric, we call it a divergence.



From PLCA to optimal spectral transportation with a fixed dictionary W

PLCA

min
H�0

DKL (V |WH ) s.t. 8n, khnk1 = 1

Unmixing with OT

min
H�0

DC (V |WH ) s.t. 8n, khnk1 = 1

I C may be adjusted to allow local
displacement (e.g., cij = (fi � fj)

2)
I Requires that columns of W to be

appropriate note templates.
I Not robust to variability in spectral

envelopes.

Quadratic cost C2 (log scale)

j = 1 . . . 100

i
=

1
..
.1
00



Harmonic-invariant transportation with a diract dictionary

Principle: allow energy at fi to be transported
to fundamental frequency fj =

fi
q with any

positive integer q .
Harmonic invariant cost Ch defined as

cij = min
q=1,...,

⇠
fi
fj

⇡(fi � qfj)
2 + ✏ �q 6=1,

where ✏ is a small positive value.
Main features:

I term ✏ �q 6=1 discriminate octaves
I dictionary W can be composed of diracs:

wik = �fi=⌫k , where ⌫k is the fundamental
frequency of the k-th note

I such a dictionary allows significant
algorithmic and computational
enhancements
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OT unmixing with a pre-learned dictionary and quadratic cost

Original problem:

min
H�0

DC (V |WH ) s.t. 8n, khnk1 = 1

Using separability in time (n) and introducing the transportation matrix, it is
equivalent to solve, for any n,

min
hn�0,T�0

hT,Ci s.t.

(

T1M = v
TT1M = Whn

I this is a linear program
I with a large number of variables (M2 + K ⇡ 105)



OT unmixing with a dirac dictionary and harmonic cost

Dimension reduction of T and C:
I K < M notes in the dirac

dictionary W
I one non-zero coefficient per

column

) M � K zeros in ev

) zeros in related columns in T
) T and C can be reduced to their

useful columns eT and eC
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OT unmixing with a dirac dictionary and harmonic cost

Dimension reduction of T and C:
I K < M notes in the dirac

dictionary W
I one non-zero coefficient per

column

) M � K zeros in ev
) zeros in related columns in T

) T and C can be reduced to their
useful columns eT and eC
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OT unmixing with a dirac dictionary and harmonic cost

Dimension reduction of T and C:
I K < M notes in the dirac

dictionary W
I one non-zero coefficient per

column

) M � K zeros in ev
) zeros in related columns in T
) T and C can be reduced to their

useful columns eT and eC
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OT unmixing with a dirac dictionary and harmonic cost

Dimension reduction of T and C:
I K < M notes in the dirac

dictionary W
I one non-zero coefficient per

column

) M � K zeros in ev
) zeros in related columns in T
) T and C can be reduced to their

useful columns eT and eC

v
K

M

eT

ev

Resulting problem: for any n,

min
hn�0,eT�0

D

eT, eC
E

s.t.

(

eT1K = v
eTT1M = Whn



OT unmixing with a dirac dictionary and harmonic cost

Dimension reduction of T and C:
I K < M notes in the dirac

dictionary W
I one non-zero coefficient per

column

) M � K zeros in ev
) zeros in related columns in T
) T and C can be reduced to their

useful columns eT and eC

v
K

M

eT

ev

Resulting problem: for any n,

min
hn�0,eT�0

D

eT, eC
E

s.t.

(

eT1K = v
eTT1M = Whn

+ subsequent decoupling w.r.t. the rows of eT.
) O (M) (PLCA: O (KM) per iteration).



Adding regularisation

Entropic regularisation (OSTe):
I add penalty �

P

ik t̃ik log(t̃ik)
I computational complexity per frame in O (KM)

Group regularisation (OSTg ):

I add penalty �
P

k

q

ketkk1

I majoration-minimization algorithm (since no close-form solution)

Using both regularisation simultaneously is also possible.



Optimal Transport for music transcription

introduction to problem 
a solution with OT 
some results



Toy experiments: settings

I Synthetic dictionary: 8 harmonic spectral templates with Gaussian-shape
window and exponential decay in spectral envelope

I Observation 1 generated by mixing 1st and 4th components with
perturbation in frequency

I Observation 2 generated by mixing 1st and 6th components with
perturbation in spectral envelope

I l1-error performance:
�

�

�

eh � htrue

�

�

�

1



Toy experiments: unmixing with shifted fundamental frequencies

Method PLCA OTh OST OSTg OSTe OSTe+g

`1 error 0.900 0.340 0.534 0.021 0.660 0.015
Time (s) 0.057 6.541 0.006 0.007 0.007 0.013



Toy experiments: unmixing with wrong harmonic amplitudes

Method PLCA OTh OST OSTg OSTe OSTe+g

`1 error 0.791 0.430 0.971 0.045 0.911 0.048
Time (s) 0.019 6.529 0.006 0.006 0.005 0.010



Transcription of real musical data: results

Recognition performance (F-measure values) and average computational unmixing times

MAPS dataset file IDs PLCA PLCA+noise OST OST+noise OSTe OSTe+noise
chpn_op25_e4_ENSTDkAm 0.679 0.671 0.566 0.564 0.695 0.695
mond_2_SptkBGAm 0.616 0.713 0.470 0.534 0.610 0.607
mond_2_SptkBGCl 0.645 0.687 0.583 0.676 0.695 0.730
muss_1_ENSTDkAm 4 0.613 0.478 0.513 0.550 0.671 0.667
muss_2_AkPnCGdD 0.587 0.574 0.531 0.611 0.667 0.675
mz_311_1_ENSTDkCl 0.561 0.593 0.580 0.628 0.625 0.665
mz_311_1_StbgTGd2 0.663 0.617 0.701 0.718 0.747 0.747
Average 0.624 0.619 0.563 0.612 0.673 0.684
Time (s) 14.861 15.420 0.004 0.005 0.210 0.202



Conclusions and future works

Conclusions
I OT models are able to model variability in amplitude and frequency
I does not require the design of a sofisticated dictionary
I computationally efficient solutions are provided

A Python implementation of OST and real-time demonstrator are available at

https://github.com/rflamary/OST

Future works
I design new cost matrices C
I add time structure in the model
I larger experiments needed
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