A Review of Regularized Optimal Transport

Marco Cuturi

Joint work with many people, including: G. Peyré, A. Genevay (ENS), A. Doucet (Oxford) J. Solomon (MIT), J.D. Benamou, N. Bonneel, F. Bach, L. Nenna (INRIA),
G. Carlier (Dauphine).

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

Monge

Kantorovich

Dantzig

Wasserstein

Brenier

Otto

McCann

Villani

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

Statistical Models

Brain Activation Maps

Color Histograms

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

Statistical Models

Brain Activation Maps

Color Histograms

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

OT and data-analysis

- Key developments in (applied) maths ~'90s [McCann'95], [JKO'98], [Benamou'98], [Gangbo'98], [Ambrosio'06], [Villani'03/'09].
- Key developments in TCS / graphics since '00s [Rubner'98], [Indyk'03], [Naor'07], [Andoni'15].

OSmall to no-impact in large-scale data analysis:

- computationally heavy;
\uparrow Wasserstein distance is not differentiable

OT and data-analysis

Today's talk: Entropy Regularized OT

- Very fast compared to usual approaches, GPGPU parallel.
- Differentiable, important if we want to use OT distances as loss functions.
- Can be automatically differentiated, simple iterative process, $D L$-toolboxes compatible.
- OT can become a building block in ML.

Background: OT Geometry

Consider (Ω, D), a metric probability space. Let μ, ν be probability measures in $\mathcal{P}(\Omega)$.

- [Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T \# \mu=\nu} \int_{\Omega} D(x, T(x)) \mu(d x)
$$

Background: OT Geometry

Consider (Ω, D), a metric probability space. Let μ, ν be probability measures in $\mathcal{P}(\Omega)$.

- [Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T \# \mu=\nu} \int_{\Omega} \boldsymbol{D}(x, T(x)) \boldsymbol{\mu}(d x)
$$

[Kantorovich'42] Relaxation

- Instead of maps $T: \Omega \rightarrow \Omega$, consider probabilistic maps, i.e. couplings $P \in \mathcal{P}(\Omega \times \Omega)$:

$$
\begin{gathered}
\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
\boldsymbol{P}(\boldsymbol{A} \times \Omega)=\boldsymbol{\mu}(\boldsymbol{A}), \\
\boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{gathered}
$$

[Kantorovich'42] Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

[Kantorovich'42] Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

Couplings

Couplings

Wasserstein Distance

Def. For $p \geq 1$, the p-Wasserstein distance

 between $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$ is$$
W_{p}(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left(\inf _{P \in \Pi(\mu, \boldsymbol{\nu})} \mathbb{E}_{P}\left[D(X, Y)^{p}\right]\right)^{1 / p}
$$

Wasserstein between 2 Diracs

Wasserstein on Uniform Measures

$$
\mu=\sum_{i=1}^{n} \frac{1}{n} \delta_{x_{i}}
$$

Wasserstein on Uniform Measures

Optimal Assignment \subset Wasserstein

Wasserstein on Empirical Measures

Wasserstein on Empirical Measures

$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
$\left.\left.\begin{array}{c} \\ x_{1} \\ \vdots \\ x_{n}\end{array} \begin{array}{ccc}y_{1} & \cdots & y_{m} \\ \cdot & \cdot & \cdot \\ \cdot & D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p} & \cdot \\ \cdot & \cdot & \cdot\end{array}\right] \begin{array}{c}{ }_{18} a_{n} \\ a_{1} \\ \vdots \\ \cdots\end{array} \begin{array}{ccc}b_{1} & \cdots & b_{m} \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots\end{array}\right]$

Wasserstein on Empirical Measures

$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
$\left.\left.\begin{array}{c} \\ x_{1} \\ \vdots \\ x_{n}\end{array} \begin{array}{ccc}y_{1} & \cdots & y_{m} \\ \cdot & \cdot & \cdot \\ \cdot & D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p} & \cdot \\ \cdot & \cdot & \cdot\end{array}\right] \begin{array}{ccc}b_{1} & \cdots & b_{m} \\ a_{1} \\ \vdots \\ \vdots & \vdots & \vdots \\ \vdots & P^{T} \mathbf{1}_{n}=b & \vdots \\ \vdots & \vdots & \vdots\end{array}\right]$

Wasserstein on Empirical Measures

Consider $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
Def. Optimal Transport Problem

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X Y}\right\rangle
$$

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Note: flow/PDE formulations [Beckman'61]/[Benamou'98] can be used for $p=1 / p=2$ for a sparse-graph metric/Euclidean metric.

Discrete OT Problem

c) emd.c

4 - 6 emd.c:6:1 * <No selected symbol> *
end.c
Last update: 3/14/98
An implementation of the Earth Movers Distance.
Based of the solution for the Transportation problem as described in
"Introduction to Mathematical Programming" by F. S. Hillier and
G. 3. Lieberman, McGraw-Hill, 1990

Copyright (C) 1998 Yossi Rubner
Computer Science Department, Stanford University
E-Mail: rubnerecs.stanford,edu URL: http:/lvision.stanford.edu/~rubner
*/
/*\#include <stdio.h>
\#include <stdlib.h>*/
\#include <math. h>
\#include "emd.h"
\#define DEBUG_LEVEL
/*
DEBU LEVEL
= NO MESSAGES
= PRINT THE NUMBER OF ITERATIONS AND THE FINAL RESULT
2 = PRINT THE RESULT AFTER EVERY ITERATION
3 = PRINT ALSO THE FLOW AFTER EVERY ITERATION
$4=$ PRINT A LOT OF INFORMATION (PROBABLY USEFUL OHY FOR THE AUTHOR)
*/
\#define MAX_SIG_SIZE1 (MAX_SIG_SIZE+1) /* FOR THE POSIBLE DUMMY FEATURE */
/* NEW TYPES DEFINITION */
/* node1_t IS USED FOR SINGLE-LINKED LISTS */
typedef struct node1_t \{
int i;
double val;
struct node1_t *Next;
\} node1_t;
/* node1_t IS USED FOR DOUBLE-LINKED LISTS */
typedef struct node2_t
int i, j;
double val;
struct node2_t *NextC;
struct node2_t *NextR; /* NEXT ROW */
) node2_t ;
/* GLOBAL VARIABLE DECLARATION */
static int _n1, _n2;
/* SIGNATURES SIZES */
static float _C[MAX_SIG_SIZE1][MAX_SIG_SIZE1];/* THE COST MATRIX *
static node2_t _X[MAX_SIG_SIZE1*2];

Discrete OT Problem

```
| emd.c:6:1 * <No selected symbol> *

\section*{end. \(c\)}

Last update: 3/14/98
An implementation of the Earth Movers Distance.
Based of the solution for the Transportation problem as described in
"Introduction to Mathematical Programming" by F. S. Hillier and
G. J. Lieberman, McGraw-Hill, 1990.

Copyright (C) 1998 Yossi Rubner
Computer Science Department, Stanford University
E-Mail: rubnerecs.stanford,edu URL: http:/lvision.stanford.edu/~rubner
*/
/*\#include <stdio.h>
\#include <stdlib.h>*/
\#include <math. h>
\#include "emd.h"
\#define DEBUG_LEVEL
/*
DEBUG_LEVEL:
= NO MESSAGES
= PRINT THE NUMBER OF ITERATIONS AND THE FINAL RESULT
2 = PRINT THE RESULT AFTER EVERY ITERATION
\(3=\) PRINT ALSO THE FLOW AFTER EVERY ITERATION
\(4=\) PRINT A LOT OF INFORMATION (PROBABLY USEFUL ORY FOR THE AUTHOR)
*/
\#define MAX_SIG_SIZE1 (MAX_SIG_SIZE+1) /* FOR THE POSIBLE DUMMY FEATURE */
/* NEW TYPES DEFINITION */
/* node1_t IS USED FOR SINGLE-LINKED LISTS */
typedef struct node1_t \{
int i;
double val;
struct node1_t *Next;
f nodel_t;
/* node1_t IS USED FOR DOUBLE-LINKED LISTS */
typedef struct node2_t
int i, \(j\);
double val;
struct node2_t *NextC; \(\quad\) NEXT COLUMN *
struct node2_t *NextR; /* NEXT ROW */
) node2_t ;
/* GLOBAL VARIABLE DECLARATION */
\(/ *\) SIGNATURES SIZES */
static int _n1,
static float _ C 2 ;
static node2_t _X[MAX_SIG_SIZE1*2];

\section*{Discrete OT Problem}
```

| emd.c:6:1 * <No selected symbol> *

end. c

Last update: 3/14/98
An implementation of the Earth Movers Distance.
Based of the solution for the Transportation problem as described in
"Introduction to Mathematical Programming" by F. S. Hillier and
G. J. Lieberman, McGraw-Hill, 1990.

Copyright (C) 1998 Yossi Rubner
Computer Science Department, Stanford University
E-Mail: rubnerecs.stanford,edu URL: http:/lvision.stanford.edu/~rubner
*/
/*\#include <stdio.h>
\#include <stdlib.h>*/
\#include <math. h>
\#include "emd.h"
\#define DEBUG_LEVEL
/*
DEBUG_LEVEL:
= NO MESSAGES
= PRINT THE NUMBER OF ITERATIONS AND THE FINAL RESULT
2 = PRINT THE RESULT AFTER EVERY ITERATION
$3=$ PRINT ALSO THE FLOW AFTER EVERY ITERATION
$4=$ PRINT A LOT OF INFORMATION (PROBABLY USEFUL ORY FOR THE AUTHOR)
*/
\#define MAX_SIG_SIZE1 (MAX_SIG_SIZE+1) /* FOR THE POSIBLE DUMMY FEATURE */
/* NEW TYPES DEFINITION */
/* node1_t IS USED FOR SINGLE-LINKED LISTS */
typedef struct node1_t \{
int i;
double val;
struct node1_t *Next;
f nodel_t;
/* node1_t IS USED FOR DOUBLE-LINKED LISTS */
typedef struct node2_t
int i, j;
double val;
struct node2_t *NextC; \quad NEXT COLUMN *
struct node2_t *NextR; /* NEXT ROW */
) node2_t ;
/* GLOBAL VARIABLE DECLARATION */
$/ *$ SIGNATURES SIZES */
static int _n1,
static float _ C 2 ;
static node2_t _X[MAX_SIG_SIZE1*2];

Discrete OT Problem

Discrete OT Problem

network flow solver used in practice.
 $O\left(n^{3} \log (n)\right)$
 $U(\boldsymbol{a}, \boldsymbol{b})$

Discrete OT Problem

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

$$
E(P) \stackrel{\text { def }}{=}-\sum_{i, j=1}^{n m} P_{i j}\left(\log P_{i j}\right)
$$

Note: Unique optimal solution because of strong concavity of Entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

Note: Unique optimal solution because of strong concavity of Entropy

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, v \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
\begin{aligned}
L(P, \alpha, \beta) & =\sum_{i j} P_{i j} M_{i j}+\gamma P_{i j} \log P_{i j}+\alpha^{T}(P \mathbf{1}-\boldsymbol{a})+\beta^{T}\left(P^{T} \mathbf{1}-\boldsymbol{b}\right) \\
\partial L / \partial P_{i j} & =M_{i j}+\gamma\left(\log P_{i j}+1\right)+\alpha_{i}+\beta_{j} \\
\left(\partial L / \partial P_{i j}\right. & =0) \Rightarrow P_{i j}=e^{\frac{\alpha_{i}}{\gamma}+\frac{1}{2}} e^{-\frac{M_{i j}}{\gamma}} e^{\frac{\beta_{j}}{\gamma}+\frac{1}{2}}=u_{i} K_{i j} \boldsymbol{v}_{j}
\end{aligned}
$$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

- $O(n m)$ complexity, GPGPU parallel [C'13].
- $O\left(n^{d+1}\right)$ if $\Omega=\{1, \ldots, n\}^{d}$ and D^{p} separable. [S..C...'15]

Very Fast EMD Approx. Solver

Note. (Ω, D) is a random graph with shortest path metric, histograms sampled uniformly on simplex, Sinkhorn tolerance 10^{-2}.

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a, \boldsymbol{X}),(b, \boldsymbol{Y}))=\min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X Y}\right\rangle-\gamma E(\boldsymbol{P})
$$

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a+\Delta a, \boldsymbol{X}),(b, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?
$$

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a+\Delta a, \boldsymbol{X}),(b, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?
$$

$$
\begin{aligned}
& \mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \\
& a \leftarrow a+\Delta a \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}
\end{aligned}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a, \boldsymbol{X}+\Delta \boldsymbol{X}),(b, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))+? ?
$$

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

Regularization $->$ Differentiability

$$
W_{\gamma}((a, \boldsymbol{X}+\Delta \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))=W_{\gamma}((\boldsymbol{a}, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))+? ?
$$

$$
\begin{aligned}
& \mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \\
& X \leftarrow X+\Delta X \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}
\end{aligned}
$$

Crucial for "min data $+W$ " problems

- Quantization, k-means problem [Lloyd'82]

$$
\min _{\substack{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right) \\|\operatorname{supp} \mu|=k}} W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\text {data }}\right)
$$

- [McCann'95] Interpolant

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)}(1-t) W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{1}\right)+t W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{2}}\right)
$$

- [JKO'98] PDE's as gradient flows in $(\mathcal{P}(\Omega), W)$.

$$
\mu_{t+1}=\underset{\mu \in \mathcal{P}(\Omega)}{\operatorname{argmin}} J(\mu)+\lambda_{t} W_{p}^{p}\left(\mu, \mu_{t}\right)
$$

Crucial for "min data $+W$ " problems

Any (ML) problem involving a $\mathbb{K L}$ or $\mathbf{L} 2$ loss between (parameterized) histograms or probabilility measures can be easily
Wasserstein-ized if we can differentiate W efficiently.

1. Differentiability of Regularized OT

Def. Dual regularized OT Problem
$W_{\gamma}(\mu, \boldsymbol{\nu})=\max _{\alpha, \beta} \alpha^{T} a+\beta^{T} \boldsymbol{b}-\frac{1}{\gamma}\left(e^{\alpha / \gamma}\right)^{T} K e^{\beta / \gamma}$
Prop. $W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is
[CD'14]

1. convex w.r.t. a (Danskin),

$$
\nabla_{a} W_{\gamma}=\alpha^{\star}=\gamma \log (\boldsymbol{u})
$$

2. decreased, when $p=2, \Omega=\mathbb{R}^{d}$, using

$$
\boldsymbol{X} \leftarrow \boldsymbol{Y} P_{\gamma}^{T} \mathbf{D}\left(a^{-1}\right)
$$

2. Duality for Regularized OT's

Prop. Writing $H_{\nu}: a \mapsto W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})$,

1. H_{ν} has simple Legendre transform:

$$
H_{\nu}^{*}: g \in \mathbb{R}^{n} \mapsto \gamma\left(E(\boldsymbol{b})+\boldsymbol{b}^{T} \log \left(K e^{g / \gamma}\right)\right)
$$

2. If $A \in \mathbb{R}^{n \times d}, f$ convex on \mathbb{R}^{d},

$$
\min _{a \in \Sigma_{n}} H_{\nu}(\boldsymbol{a})+f(A a)=\max _{g \in \mathbb{R}^{d}}-H_{\nu}^{*}\left(A^{T} g\right)-f^{*}(-g)
$$

3. Stochastic Formulation

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})$	$=\max _{\alpha, \beta} \alpha^{T} \boldsymbol{a}+\beta^{T} \boldsymbol{b}-\frac{1}{\gamma}\left(e^{\alpha / \gamma}\right)^{T} K e^{\beta / \gamma}$
	$=\max _{\alpha} \boldsymbol{\alpha}^{T} \boldsymbol{a}-\gamma\left(\log K e^{\alpha / \gamma}\right)^{T} \boldsymbol{b}$
	$=\max _{\alpha} \sum_{j=1}^{m} \boldsymbol{b}_{j}\left(\boldsymbol{\alpha}^{T} \boldsymbol{a}-\gamma \log K_{\cdot j}^{T} e^{\alpha / \gamma}\right)$
	$=\max _{\alpha} \sum_{j=1}^{m} f_{\boldsymbol{j}}(\boldsymbol{\alpha})$

- [GCPB'16] shows how incremental gradient methods can be used to ${ }_{3}$ scale this further.

4. Algorithmic Formulation

Def. For $L \geq 1$, define

$$
W_{L}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{L}, M_{X \boldsymbol{Y}}\right\rangle,
$$

where $P_{L} \stackrel{\text { def }}{=} \operatorname{diag}\left(u_{L}\right) K \operatorname{diag}\left(v_{L}\right)$,
$v_{0}=\mathbf{1}_{m} ; l \geq 0, u_{l} \stackrel{\text { def }}{=} a / K v_{l}, v_{l+1} \stackrel{\text { def }}{=} b / K^{T} u_{l}$.
Prop. $\frac{\partial W_{L}}{\partial X}, \frac{\partial W_{L}}{\partial a}$ can be computed recursively, in $O(L)$ kernel $K \times$ vector products.

Algorithmic Formulation of Reg. OT

Example: Differentiability w.r.t. a

$$
\begin{aligned}
\left(\frac{\partial v_{0}}{\partial a}\right)^{T} & =\mathbf{0}_{m \times n} \\
\left(\frac{\partial u_{l}}{\partial a}\right)^{T} x & =\frac{x}{K v_{l}}-\left(\frac{\partial v_{l}}{\partial a}\right)^{T} K^{T} \frac{x \circ a}{\left(K v_{l}\right)^{2}}
\end{aligned}
$$

$$
\left(\frac{\partial v_{l+1}}{\partial a}\right)^{T} y=-\left(\frac{\partial \boldsymbol{u}_{l}}{\partial a}\right)^{T} K \frac{y \circ b}{\left(K^{T} \boldsymbol{u}_{l}\right)^{2}}
$$

Algorithmic Formulation of Reg. OT

Example: Differentiability w.r.t. a

$$
N=K \circ M_{X Y}
$$

$\nabla_{a} W_{L}(\mu, \nu)=\left(\frac{\partial u_{L}}{\partial a}\right)^{T} N v_{L}+\left(\frac{\partial v_{L}}{\partial a}\right)^{T} N^{T} u_{L}$

```
function [d,grad_a,grad_b,hess_a,hess_b] = sinkhornObjGradHess(a,b,k,M,niter)
u_update = @(v,a) a./(K*v);
v_update = @(u,b) b./(K'*u);
% DuDa = @(eps,dvda,a,v) (eps./(K*v))- (a./((K*v).^2)).*(K*dvda(eps));
%
% DvDa = @(eps,duda,b,u) -(b./((K'*u).^2)).*(K'*duda(eps));
%
% DuDb = @(eps,dvdb,a,v) -(a./((K*v).^2)).*(K*dvdb(eps));
%
% DvDb = @(eps,dudb,b,u) (eps./(K'*u))-(b./((K'*u).^2)).*(K'*dudb(eps));
DuDat = @(x,dvdat,a,v) bsxfun(@rdivide,x,K*v)... (x./(K*v))
    -dvdat(K'*( bsxfun(@times,x,(a./((K*v).^2)))));...-dvdat(K'*( (a./((K*v).^2)).*x));
DvDat = @(x,dudat,b,u) -dudat(K*(bsxfun(@times,x,(b./((K'*u).^2))))); ...(b./((㐌*u).^2)).*x))
JDuDat= @(x,Jdvdat,dvdat,a,v) -diag((x'*dvdat(K'))'./((K*v).^2)) ...(K*dvda(x))
    - Jdvdat(x)*K'*diag(a./((K*v).^2))...
    - dvdat(K'* ...
    ( diag(a.*( (-2*(x'*dvdat(K'))')./((K*v).^3)))+...
    diag(x./((K*V).^2)) )); %1
JDvDat = @(x,Jdudat,dudat,b,u) ...
    -Jdudat(x)*K*diag(b./((K'*u).^2))...
    - dudat(K)* ( ...
    diag(b.*( (-2* (x'*dudat(K))')./((K'*u).^3)))) ;...
```

```
DuDbt = @(x,dvdbt,a,v) -dvdbt(K'*(bsxfun(@times,x,(a./((K*v).^2))))); ...(a./((K*v).^^2)).*x));
DvDbt = @(x,dudbt,b,u) bsxfun(@rdivide,x, K'*u) ... (x./(每*u))...
    -dudbt(K*( bsxfun(@times,x,(b./((K'*u).^2)))));...( b./((郋*u).^2)) .*x));
```

JDvDbt $=@(x, J d u d b t, \operatorname{dudbt}, \mathrm{~b}, \mathrm{u})-\operatorname{diag}\left(\left(\mathrm{x}^{\prime} * \operatorname{dudbt}(\mathrm{~K})\right)^{\prime} . /\left(\left(\mathrm{K}^{\prime} * u\right) \mathrm{H}^{\wedge} 2\right)\right) \ldots \quad\left(\mathrm{K}^{\prime} * \operatorname{dudb}(\mathrm{x})\right)$
- Jdudbt(x)*K*diag(b./((K'*u).^2))...
- dudbt(K)* (...
diag(b.*((-2*($\left.\left.\left.\left.x^{\prime *} \operatorname{dudbt}(K)\right)^{\prime}\right) . /\left(\left(K^{\prime *} u\right) .^{\wedge} 3\right)\right)\right)+.$.
$\operatorname{diag}\left(x . /\left(\left(K^{\prime *} u\right) .^{\wedge} 2\right)\right)$) ;
JDuDbt $=$ @(\mathbf{x}, Jdvdbt, dvdbt, $\mathrm{a}, \mathrm{v}) \ldots$
-Jdvdbt(x)*K'*diag(a./((K*v).^2))...
- dvdbt(K')* (...
diag(a.*((-2* ($\left.\left.\left.\left.x^{\prime *} \operatorname{dvdbt}\left(K^{\prime}\right)\right)^{\prime}\right) . /\left(\left(K^{*} v\right) .{ }^{\wedge} 3\right)\right)\right)$;

```
n=size(a,1);
m=size(b,1);
```

DVDAT= @(eps) zeros(n,size(eps,2));
DVDBT= @(eps) zeros(m,size(eps,2));
JDVDAT= @(eps) zeros (n, m);
JDVDBT= @(eps) zeros (m,m);
$\mathrm{v}=\mathrm{ones}(\mathrm{m}, \operatorname{size}(\mathrm{b}, 2))$;
for $j=1:$ niter,
$u=u$ _update ($v, a)$;
DUDAT $=@(x) \operatorname{DuDat}(x, \operatorname{DVDAT}, \mathrm{a}, \mathrm{v})$;
DUDBT $=$ @(x) DuDbt(x,DVDBT, $\mathrm{a}, \mathrm{v})$;
if nargout>3
JDUDAT $=@(x) \operatorname{JDuDat}(x$, JDVDAT, DVDAT, $\mathrm{a}, \mathrm{v})$;
JDUDBT $=$ @(x) JDuDbt(x,JDVDBT,DVDBT, a,v);
end
v=v_update(u,b);
DVDAT $=$ @(x) DvDat (x, DUDAT, $\mathrm{b}, \mathrm{u})$;
DVDBT $=$ @(x) $\operatorname{DvDbt(x,DUDBT,b,u);~}$
if nargout>3
JDVDAT $=@(x) \operatorname{JDvDat(x,JDUDAT,DUDAT,~} \mathrm{b}, \mathrm{u})$;
$\operatorname{JDVDBT}=@(x) \operatorname{JDvDbt}(\mathrm{x}, \mathrm{JDUDBT}, \operatorname{DUDBT,b,u);~}$
end
end

```
U=K.*M;
d=diag(u'*U*v);
grad_a=(DUDAT(U*v)+DVDAT(U'*u));
grad_b=(DUDBT(U*v)+DVDBT(U'*u));
if nargout>3
    hess_a= @(eps) JDUDAT(eps)*(U*V)+DUDAT((eps'*DVDAT(U'))')+...
        JDVDAT(eps)*(U'*u)+DVDAT((eps'*DUDAT(U))');
end
```


Thanks to these tricks...

- [Agueh'11] Barycenters [CD'14][BCCNP'15] [GCP'15][S..C..'15]
- [Burger'12] TV gradient flow using duality [CP'16]
- Dictionary Learning / Latent Factors [RCP'16]
- [Bigot'15] W-PCA [SC'15]
- Density fitting / parameter estimation [MMC'16]
- Inverse problems / Wasserstein regression [BPC'16]

Wasserstein Barycenters

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{p}^{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Multimarginal Formulation

- Exact solution (W_{2}) using MM-OT. [Agueh'11]

Multimarginal Formulation

- Exact solution (W_{2}) using MM-OT. [Agueh'11]

If $\left|\operatorname{supp} \boldsymbol{\nu}_{\boldsymbol{i}}\right|=\boldsymbol{n}_{\boldsymbol{i}}$, LP of size $\left(\prod_{i} \boldsymbol{n}_{\boldsymbol{i}}, \sum_{i} \boldsymbol{n}_{\boldsymbol{i}}\right)$

Finite Case, LP Formulation

- When Ω is a finite set, metric M, another LP.

$$
\min _{\mu} \sum_{i} \lambda_{i} W_{p}^{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Finite Case, LP Formulation

- When Ω is a finite set, metric M, another LP.

$$
\begin{aligned}
\min _{P_{1}, \cdots, P_{N}, a} & \sum_{i=1}^{N} \lambda_{i}\left\langle\boldsymbol{P}_{i}, M\right\rangle \\
\text { s.t. } & P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{i}, \forall i \leq N, \\
& \boldsymbol{P}_{1} \mathbf{1}_{n}=\cdots=\boldsymbol{P}_{N} \mathbf{1}_{d}=a .
\end{aligned}
$$

If $|\Omega|=n$, LP of size $\left(N n^{2},(2 N-1) n\right)$; unstable

Primal Descent on Regularized W

$$
\min _{\mu \in Q \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\mu, \boldsymbol{\nu}_{i}\right)
$$

Fast Computation of Wasserstein Barycenters International Conference on Machine Learning 2014

Primal Descent on Regularized W

$$
\min _{\boldsymbol{\mu} \in Q \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Fast Computation of Wasserstein Barycenters International Conference on Machine Learning 2014

Primal Descent on Regularized W

$$
\min _{\boldsymbol{\mu} \in Q \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Fast Computation of Wasserstein Barycenters International Conference on Machine Learning 2014

Wasserstein Barycenter = KL Projections

$$
\left\langle P, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(P)=\gamma \mathbf{K} \mathbf{L}(P \mid K)
$$

$$
\begin{aligned}
& \min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\underset{\substack{\mathbf{P}=\left[\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{N}\right] \\
\mathbf{P} \in \boldsymbol{C}_{\mathbf{1}} \cap \boldsymbol{C}_{\mathbf{2}}}}{ } \sum_{i=1}^{N} \lambda_{i} \mathbf{K L}\left(\boldsymbol{P}_{i} \mid K\right) \\
& C_{1}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
& C_{2}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{i}\right\}
\end{aligned}
$$

Wasserstein Barycenter = KL Projections

$\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\min _{\substack{\mathbf{P}=\left[\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right] \\ \mathbf{P} \in \boldsymbol{C}_{\mathbf{1}} \cap \boldsymbol{C}_{\mathbf{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K} \mathbf{L}\left(\boldsymbol{P}_{\boldsymbol{i}} \mid K\right)$

$$
\begin{aligned}
& C_{\mathbf{1}}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
& \boldsymbol{C}_{\mathbf{2}}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}\right\}
\end{aligned}
$$

[BCCNP’15]
$[K \cdots K]$

Wasserstein Barycenter = KL Projections

$\min _{\boldsymbol{a}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\min _{\substack{\left[\begin{array}{l}\left.\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{\boldsymbol{N}}\right] \\ \mathbf{P} \in C_{1} \cap \boldsymbol{C}_{\mathbf{2}}\end{array}\right.}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K L}\left(\boldsymbol{P}_{\boldsymbol{i}} \mid K\right)$

$$
\begin{aligned}
& \boldsymbol{C}_{\mathbf{1}}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=\boldsymbol{a}\right\} \\
& \boldsymbol{C}_{\mathbf{2}}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}\right\}
\end{aligned}
$$

u=ones(size(B)); \% d x N matrix

[BCCNP'15]

 while not converged$$
\mathrm{v}=\mathrm{u} . *\left(\mathrm{~K}^{\prime} *\left(\mathrm{~B} . /\left(\mathrm{K}^{*} \mathrm{u}\right)\right)\right) ; \% 2(\mathrm{Nd} \wedge 2) \text { cost }
$$

$$
u=b s x f u n(@ t i m e s, u, \exp (\log (v) * w e i g h t s)) . / v ;
$$

end
$a=$ mean $(v, 2)$;

Iterative Bregman Projections for
Regularized Transportation Problems SIAM J. on Sci. Comp. 2015

Application: Graphics

Application: Graphics

Application: Graphics

 Optimal Transportation on Geometric Domains,

Application: Graphics

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

Application: Graphics

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

Inverse Wasserstein Problems

- consider Barycenter operator:

$$
\boldsymbol{b}(\lambda) \stackrel{\text { def }}{=} \underset{a}{\operatorname{argmin}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)
$$

- address now Wasserstein inverse problems:

Given \boldsymbol{a}, find $\operatorname{argmin} \mathcal{E}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))$ $\lambda \in \Sigma_{N}$

The Wasserstein Simplex

Barycenters = Fixed Points

Prop. [BCCNP'15] Consider $\boldsymbol{B} \in \Sigma_{d}^{N}$ and let $U_{0}=1_{d \times N}$, and then for $l \geq 0$:

$$
\boldsymbol{b}^{l} \stackrel{\text { def }}{=} \exp \left(\log \left(K^{T} \boldsymbol{U}_{l}\right) \lambda\right) ;\left\{\begin{array}{l}
\boldsymbol{V}_{l+1} \stackrel{\text { def }}{=} \frac{b^{l} \mathbf{1}_{N}^{T}}{K^{T} U_{l}} \\
\boldsymbol{U}_{l+1} \stackrel{\text { def }}{=} \frac{B}{K V_{l+1}}
\end{array}\right.
$$

Using Truncated Barycenters

- instead of using the exact barycenter

$$
\underset{\lambda \in \Sigma_{N}}{\operatorname{argmin}} \mathcal{E}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))
$$

- use instead the L-iterate barycenter

$$
\underset{\lambda \in \Sigma_{N}}{\operatorname{argmin}} \mathcal{E}^{(L)}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}\left(\boldsymbol{a}, \boldsymbol{b}^{(L)}(\lambda)\right)
$$

- Differente using the chain rule.
$\nabla \mathcal{E}^{(L)}(\lambda)=\left[\partial \boldsymbol{b}^{(L)}\right]^{T}(\boldsymbol{g}),\left.\boldsymbol{g} \stackrel{\text { def }}{=} \nabla \operatorname{Loss}(\boldsymbol{a}, \cdot)\right|_{\boldsymbol{b}^{(L)}(\lambda)}$.

Gradient / Barycenter Computation

$$
\begin{aligned}
& \text { function SINKHORN-DIFFERENTIATE }\left(\left(p_{s}\right)_{s=1}^{S}, q, \lambda\right) \\
& \forall s, b_{s}^{(0)} \leftarrow \mathbb{1} \\
& (w, r) \leftarrow\left(0^{S}, 0^{S \times N}\right) \\
& \text { for } \ell=1,2, \ldots, L \quad / / \text { Sinkhorn loop } \\
& \forall s, \varphi_{s}^{(\ell)} \leftarrow K^{\top} \frac{p_{s}}{K b_{s}^{(\ell-1)}} \\
& p \leftarrow \prod_{s}\left(\varphi_{s}^{(\ell)}\right)^{\lambda_{s}} \\
& \forall s, b_{s}^{(\ell)} \leftarrow \frac{p}{\varphi_{s}^{(\ell)}} \\
& g \leftarrow \nabla \mathcal{L}(p, q) \odot p \\
& \text { for } \ell=L, L-1, \ldots, 1 \quad / / \text { Reverse loop } \\
& \forall s, w_{s} \leftarrow w_{s}+\left\langle\log \varphi_{s}^{(\ell)}, g\right\rangle \\
& \forall s, r_{s} \leftarrow-K^{\top}\left(K\left(\frac{\lambda_{s} g-r_{s}}{\varphi_{s}^{(\ell)}}\right) \odot \frac{p_{s}}{\left(K b_{s}^{(\ell-1)}\right)^{2}}\right) \odot b_{s}^{(\ell-1)} \\
& g \leftarrow \sum_{s} r_{s} \\
& \text { return } P^{(L)}(\lambda) \leftarrow p, \nabla \mathcal{E}_{L}(\lambda) \leftarrow w
\end{aligned}
$$

Application: Volume Reconstruction

Shape database

$$
\left(p_{1}, \ldots, p_{5}\right)
$$

Wasserstein Barycentric Coordinates: Histogram
Regression using Optimal Transport, SIGGRAPH'16
Input shape q

Projection $P(\lambda)$
[BPC'16]

Application: Color Grading

Application: Color Grading

Application: Color Grading

Application: Color Grading

Wasserstein Barycentric Coordinates: Histogram Regression using Optimal Transport, SIGGRAPH'16
[BPC'16]

Application: Brain Mapping

Original

Euclidean
projection

To conclude

- Entropy regularization is a very effective way to get OT to work as a generic loss.
- Many recent extensions:
- [Schmitzer'16]: fast multiscale approaches
- [ZFMAP'15] [CSPV'16]: Unbalanced transport
- [SPKS'16] [PCS'16] extensions to Gromov-W.
- [FCTR'15] Domain adaptation in ML

