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What is Optimal Transport?

A geometric toolbox to  
compare probability measures  
supported on a metric space.
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OT and data-analysis

• Key developments in (applied) maths ~’90s  
[McCann’95], [JKO’98], [Benamou’98], [Gangbo’98], 
[Ambrosio’06], [Villani’03/’09]. 

!

• Key developments in TCS / graphics since ’00s  
[Rubner’98], [Indyk’03], [Naor’07], [Andoni’15]. 

!

๏Small to no-impact in large-scale data analysis: 
✦ computationally heavy;  
✦ Wasserstein distance is not differentiable
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Today’s talk: Entropy Regularized OT 

• Very fast compared to usual approaches, 
GPGPU parallel. 

• Differentiable, important if we want to use 
OT distances as loss functions. 

• Can be automatically differentiated, simple 
iterative process, DL-toolboxes compatible. 

• OT can become a building block in ML.



Background: OT Geometry
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Consider (⌦,D), a metric probability space.

Let µ,⌫ be probability measures in P(⌦).

• [Monge’81] problem: find a map T : ⌦ ! ⌦

inf
T#µ=⌫

Z
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[Kantorovich’42] Relaxation
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⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),

P (⌦⇥B) = ⌫(B)}

• Instead of maps                  , consider 
probabilistic maps, i.e. couplings                        :            

T : ⌦ ! ⌦
P 2 P(⌦⇥ ⌦)
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⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),P (⌦⇥B) = ⌫(B)}

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})
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Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.
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Couplings
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Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})
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Joint Probabilities of (µ, ν)

Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.
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Wasserstein Distance
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Def. For p � 1, the p-Wasserstein distance

between µ,⌫ in P(⌦) is

Wp(µ,⌫)
def
=

✓
inf

P2⇧(µ,⌫)
EP [D(X,Y )

p
]

◆1/p

.



Wasserstein between 2 Diracs
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�y

�
x

(⌦,D)

W p
p (�x, �y) = D(x,y)



Wasserstein on Uniform Measures
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Wasserstein on Uniform Measures
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µ =
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n

nX

i=1

D(xi,y�i
)p



Optimal Assignment ⊂ Wasserstein
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Wasserstein on Empirical Measures
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U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

2

66664

b1 ... bm

a1 · · · · · · · · ·
... · · · P1m = a · · ·

an · · · · · · · · ·

3

77775

2

66664

y1 ... ym

x1 · · ·
.

.

. · D(x
i

,y
j

)p ·

xn · · ·

3

77775



Wasserstein on Empirical Measures

18

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

2

66664

b1 ... bm

a1

...
...

...

...
... P T1n = b

...

an

...
...

...

3

77775

2

66664

y1 ... ym

x1 · · ·
.

.

. · D(x
i

,y
j

)p ·

xn · · ·

3

77775



Wasserstein on Empirical Measures
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U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Def. Optimal Transport Problem

W p
p (µ,⌫) = min

P2U(a,b)
hP ,MXY i

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .



Discrete OT Problem
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MXY

U(a, b)
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Discrete OT Problem
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Def. Dual OT problem
W p

p (µ,⌫) = max

↵2Rn,�2Rm

↵i+�jD(xi,yj)
p

↵Ta+ �T b

MXY

U(a, b)

P ?



Discrete OT Problem
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MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver 
used in practice.

Note: flow/PDE formulations [Beckman’61]/[Benamou’98] can be 
used for p=1/p=2 for a sparse-graph metric/Euclidean metric. 
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Discrete OT Problem
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MXY

U(a, b)

O(n3
log(n))

network flow solver 
used in practice.

P ?

P ?Solution       unstable 
and not always unique.

W p
p (µ,⌫) not di↵erentiable.



Entropic Regularization [Wilson’62]

25

Note: Unique optimal solution because of strong concavity of Entropy

E(P )

def
= �

nmX

i,j=1

Pij(logPij)

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Entropic Regularization [Wilson’62]
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EMD Entropy

Discrete analog:  Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of Entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Fast & Scalable Algorithm
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Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�
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Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

L(P,↵,�) =
X

ij

PijMij + �Pij logPij + ↵T
(P1� a) + �T

(PT1� b)

@L/@Pij = Mij + �(logPij + 1) + ↵i + �j

(@L/@Pij = 0) )Pij = e
↵i
� +

1
2 e

�
Mij

� e
�j

� +
1
2
= ui KKijvj



Fast & Scalable Algorithm

26

• [Sinkhorn’64] fixed-point iterations for           
!

•               complexity, GPGPU parallel [C’13] . 

•                if                           and       separable.

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

(u,v)

O(nm)

Dp

[S..C..’15]
⌦ = {1, . . . , n}dO(nd+1)

u a/KKv, v  b/KKTu



Very Fast EMD Approx. Solver
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Note.           is a random graph with shortest path metric, histograms 
sampled uniformly on simplex, Sinkhorn tolerance 10-2.

(⌦,D)
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(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Regularization ⤑ Differentiability

W�((a,X), (b, Y )) = min
P2U(a,b)

hP ,MXY i��E(P )
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Regularization ⤑ Differentiability
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• Quantization, k-means problem [Lloyd’82] 
!

!

• [McCann’95] Interpolant 
!

!

• [JKO’98] PDE’s as gradient flows in 

min
µ2P(⌦)

(1� t)W 2
2 (µ,⌫1) + tW 2

2 (µ,⌫2)

min
µ2P(Rd)

| suppµ|=k

W 2
2 (µ,⌫data)

µt+1 = argmin
µ2P(⌦)

J(µ) + �tW
p
p (µ, µt)

(P(⌦),W ).

Crucial for “min data + W ” problems 
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• Quantization, 
!

!

• [McCann’95]
!

!

• [JKO’98] 

min
µ2P(⌦)

(1� t)W 2
2 (µ,⌫1) + tW 2

2 (µ,⌫2)

min
µ2P(Rd)

| suppµ|=k

W 2
2 (µ,⌫data)

µt+1 = argmin
µ2P(⌦)

J(µ) + �tW
p
p (µ, µt)

(P(⌦),W ).

Any (ML) problem involving a KL or L2 loss  
between (parameterized) histograms or 
probabilility measures can be easily  

Wasserstein-ized if we can differentiate W efficiently.

Crucial for “min data + W ” problems 



1. Differentiability of Regularized OT
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Def. Dual regularized OT Problem

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� 1

�
(e↵/�)T KKe�/�

Prop. W�(µ,⌫) is

1. convex w.r.t. a (Danskin),

raW� = ↵?
= � log(u).

2. decreased, when p = 2,⌦ = Rd
, using

X  Y PT
� D(a�1

).

[CD’14]
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[CP’16]
Prop. Writing H⌫ : a 7! W�(µ,⌫),

1. H⌫ has simple Legendre transform:

H⇤
⌫ : g 2 Rn 7! �

⇣
E(b) + bT log(KKeg/�)

⌘

2. If A 2 Rn⇥d
, f convex on Rd

,

min

a2⌃n

H⌫(a)+f(Aa)=max

g2Rd
�H⇤

⌫(A
Tg)�f⇤

(�g)

2. Duality for Regularized OT’s
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3. Stochastic Formulation
W�(µ,⌫) = max

↵,�
↵Ta+ �T b� 1

�
(e↵/�)T KKe�/�

= max

↵
↵Ta� �(log KKe↵/�

)

T b

= max

↵

mX

j=1

bj
⇣
↵Ta� � log KKT

·je
↵/�

⌘

= max

↵

mX

j=1

ffj(↵)

• [GCPB’16] shows how incremental gradient 
methods can be used to scale this further.
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4. Algorithmic Formulation

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

where PL
def
= diag(uL)KKdiag(vL),

v0 = 1m; l � 0,ul
def
= a/KKvl,vl+1

def
= b/KKTul.
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✓
@v0

@a

◆T

= 0m⇥n,

✓
@ul

@a

◆T

x =
x

KKvl
�
✓
@vl

@a

◆T

KKT x � a
(KKvl)2

,

✓
@vl+1

@a

◆T

y = �
✓
@ul

@a

◆T

KK
y � b

(KKT
ul)2

.

Example: Di↵erentiability w.r.t. a

Algorithmic Formulation of Reg. OT
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Example: Di↵erentiability w.r.t. a

NN = KK �MXY

raWL(µ,⌫) =

✓
@uL

@a

◆T

NNvL +

✓
@vL

@a

◆T

NNTuL

Algorithmic Formulation of Reg. OT
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Algorithmic Formulation of Wasserstein
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• [Agueh’11] Barycenters [CD’14][BCCNP’15]  
[GCP’15][S..C..’15] 

• [Burger’12] TV gradient flow using duality [CP’16] 

• Dictionary Learning / Latent Factors [RCP’16] 

• [Bigot’15] W-PCA [SC’15] 

• Density fitting / parameter estimation [MMC’16] 

• Inverse problems / Wasserstein regression [BPC’16]

Thanks to these tricks…



Wasserstein Barycenters
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Wasserstein  
Barycenter 
[Agueh’11]

min
µ2P(⌦)

NX

i=1

�iW
p
p (µ,⌫i)

⌫1

⌫2
⌫3

P(⌦)



Multimarginal Formulation
• Exact solution (W2) using MM-OT. [Agueh’11]
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Multimarginal Formulation
• Exact solution (W2) using MM-OT. [Agueh’11]
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• When     is a finite set, metric M, another LP.

Finite Case, LP Formulation

44

⌦

min
µ

X

i

�iW
p
p (µ,⌫i)



• When     is a finite set, metric M, another LP.

Finite Case, LP Formulation

44

⌦

min
P1,··· ,PN ,a

NX

i=1

�ihPi,M i

s.t. Pi
T1n = bi, 8i  N,

P11n = · · · = PN1d = a.

If |⌦| = n, LP of size (Nn2, (2N � 1)n); unstable



Primal Descent on Regularized W
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Averaging 30 Measures

30 measures on R2.

50

[CD’14]

min
µ2Q⇢P(⌦)

NX

i=1

�iW�(µ,⌫i)

Fast Computation of Wasserstein Barycenters 
International Conference on Machine Learning 2014



Primal Descent on Regularized W

45

Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

[CD’14]

min
µ2Q⇢P(⌦)

NX

i=1

�iW�(µ,⌫i)

Fast Computation of Wasserstein Barycenters 
International Conference on Machine Learning 2014



Primal Descent on Regularized W

45

Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

2-Wasserstein

53

[CD’14]

min
µ2Q⇢P(⌦)

NX

i=1

�iW�(µ,⌫i)

Fast Computation of Wasserstein Barycenters 
International Conference on Machine Learning 2014



Wasserstein Barycenter = KL Projections

46

[BCCNP’15]
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C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi
 

min
a

NX

i=1

�iW�(a, bi) = min
P=[P1,...,PN ]

P2C1\C2

NX

i=1

�iKL(Pi|KK)



Wasserstein Barycenter = KL Projections

46

[ KK · · · KK] P�

[BCCNP’15]

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi
 

min
a

NX

i=1

�iW�(a, bi) = min
P=[P1,...,PN ]

P2C1\C2

NX

i=1

�iKL(Pi|KK)



Wasserstein Barycenter = KL Projections

46

[ KK · · · KK] P�

u=ones(size(B)); % d x N matrix	
while not converged	
	 v=u.*(K’*(B./(K*u))); % 2(Nd^2) cost  	
	 u=bsxfun(@times,u,exp(log(v)*weights))./v;	
end	
a=mean(v,2);

[BCCNP’15]
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Iterative Bregman Projections for 
Regularized Transportation Problems 
SIAM J. on Sci. Comp. 2015



Application: Graphics

47

Convolutional Wasserstein Distances: Efficient 
Optimal Transportation on Geometric Domains, 
SIGGRAPH’15 [S..C..’15]



Application: Graphics

47

Convolutional Wasserstein Distances: Efficient 
Optimal Transportation on Geometric Domains, 
SIGGRAPH’15 [S..C..’15]



Application: Graphics

47

Convolutional Wasserstein Distances: Efficient 
Optimal Transportation on Geometric Domains, 
SIGGRAPH’15 [S..C..’15]



Application: Graphics

47

Convolutional Wasserstein Distances: Efficient 
Optimal Transportation on Geometric Domains, 
SIGGRAPH’15

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1 t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$

H0=∞
!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$

H0=max{H(µ0),H(µ1)}

Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)
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Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.
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Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
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and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of
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propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)
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v∈V

ωva
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Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)

[S..C..’15]



48

• consider Barycenter operator: 
!

!

!

• address now Wasserstein inverse problems:

b(�)
def
= argmin

a

NX

i=1

�iW�(a, bi)

Given a, find argmin

�2⌃N

E(�) def= Loss(a, b(�))

Inverse Wasserstein Problems
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The Wasserstein Simplex



Barycenters = Fixed Points

50

Prop. [BCCNP’15] Consider B 2 ⌃

N
d

and let U0 = 1d⇥N , and then for l � 0:

bl
def
= exp

�
log

�
KTUl

�
�
�
;

8
<

:
Vl+1

def
=

bl1T
N

KTUl
,

Ul+1
def
=

B
KVl+1

.
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Using Truncated Barycenters

argmin

�2⌃N

E(L)
(�)

def
= Loss(a, b(L)

(�))

argmin

�2⌃N

E(�) def= Loss(a, b(�))

• instead of using the exact barycenter 
!

!

• use instead the L-iterate barycenter 
!

!

• Differente using the chain rule. 

rE(L)
(�) = [@b(L)

]

T
(g), g

def
= rLoss(a, ·)|b(L)(�).
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Gradient / Barycenter Computation
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Application: Volume Reconstruction

Wasserstein Barycentric Coordinates: Histogram 
Regression using Optimal Transport, SIGGRAPH’16 [BPC’16]
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Application: Color Grading
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Application: Color Grading
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Application: Color Grading
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Application: Color Grading

Wasserstein Barycentric Coordinates: Histogram 
Regression using Optimal Transport, SIGGRAPH’16 [BPC’16]
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Application: Brain Mapping



To conclude

• Entropy regularization is a very effective way to get 
OT to work as a generic loss.  

• Many recent extensions: 
• [Schmitzer’16]: fast multiscale approaches 
• [ZFMAP’15] [CSPV’16]: Unbalanced transport 
• [SPKS’16] [PCS’16] extensions to Gromov-W. 
• [FCTR’15] Domain adaptation in ML
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