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Comparing Probability Distributions

o Probability distributions and histograms
— images, vision, graphics and machine learning, ...
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o Optimal transport
— takes into account a metric d.
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— takes into account a metric d.
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Probability Measures

Positive Radon measure 1 on a set X.

dp(x) = m(z)dx p=7 . iz,
A—‘—»X I . I 0% uX

Measure of sets A C X: p(A) = [, du(z) =0
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Discretization: Histogram vs. Empirical

N
Discrete measure: (= Z ,ui(?xi T; € X, Z t; =1
i=1 i

Lagrangian (point clouds)
Constant weights 1,

(Quotient space:

XN /sy

Fulerian (histograms)

Fixed positions z; (e.g. grid)

X

Convex polytope (simplex):
{(1i)i 205 >0 =1}



Push Forward
Radon measures (u,v) on (X,Y).

Transter of measure by f : X — Y: push forward.

v(A) = u(f—1<A>>

v = fyp defined by: ]
= [, 9)dv(y) = [y 9(f(2))du(z)
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v(A) = u(f—1<A>>

v = fyp defined by:
= [, 9)dv(y) = [y 9(f(2))du(z)

f

X Y

Smooth densities: du = p(z)dzx, dv = £(x)dx
fip = v <= p(f(2))|det(9f(z))| = ()
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there exists a unique optimal f. One has f = V4 where ¢

is the unique convex function such that (Viy)yu = v - -y
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Monge Transport

min /X ez, f(2))du(z)

v=fy 1

Theorem: [Brenier]| for ¢(z,y) = |x — y|*, (u,v) with density,

there exists a unique optimal f. One has f = V4 where ¢

is the unique convex function such that (Vi)ypu = v -
Monge-Ampére equation: p(V) det(0%) = &

Non-uniqueness / non-existence:
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Kantorovitch’s Formulation

M= Zz :ui&ﬂ%
UV = Zj Vjéyj

Input distributions

Points (z;):, (y;);
Weights p; = 0, v; = 0.

N N
ng:l1 Hi = Zjil vy =1 dij = d(wi,yj)




Kantorovitch’s Formulation

M= Zz Ni&x’i
UV = Zj Vjéyj

Input distributions

Points (z;):, (y;);
Weights p; = 0, v; = 0.

N N
Z¢:I1 Hi = Zjil vy =1 dij = d(afiayj)

— W, 1s a distance over Radon probability measures.



What’s next

Marco Cuturi: fast entropic numerical solvers, applications.
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