Computational Optimal Transport

Gabriel Peyré

Marco Cuturi
Nicolas Courty

Comparing Probability Distributions

- Probability distributions and histograms
\rightarrow images, vision, graphics and machine learning, ...

Comparing Probability Distributions

- Probability distributions and histograms
\rightarrow images, vision, graphics and machine learning, ...

- Optimal transport
\rightarrow takes into account a metric d.

Comparing Probability Distributions

- Probability distributions and histograms \rightarrow images, vision, graphics and machine learning, ...

- Optimal transport
\rightarrow takes into account a metric d.

Optimal transport mean

Probability Measures

Positive Radon measure μ on a set X.

Measure of sets $A \subset X: \mu(A)=\int_{A} \mathrm{~d} \mu(x) \geqslant 0$

Probability Measures

Positive Radon measure μ on a set X.

Measure of sets $A \subset X: \mu(A)=\int_{A} \mathrm{~d} \mu(x) \geqslant 0$
Integration against continuous functions: $\int_{X} g(x) \mathrm{d} \mu(x) \geqslant 0$

$$
\begin{aligned}
& \mathrm{d} \mu(x)=m(x) \mathrm{d} x \longrightarrow \\
& \int_{X} g \mathrm{~d} \mu=\int_{X} m(x) \mathrm{d} x \\
& \mu=\sum_{i} \mu_{i} \delta_{x_{i}} \longrightarrow \int_{X} g \mathrm{~d} \mu=\sum_{i} \mu_{i} g\left(x_{i}\right)
\end{aligned}
$$

Probability Measures

Positive Radon measure μ on a set X.

Measure of sets $A \subset X: \mu(A)=\int_{A} \mathrm{~d} \mu(x) \geqslant 0$
Integration against continuous functions: $\int_{X} g(x) \mathrm{d} \mu(x) \geqslant 0$

$$
\begin{aligned}
& \mathrm{d} \mu(x)=m(x) \mathrm{d} x \longrightarrow \\
& \int_{X} g \mathrm{~d} \mu=\int_{X} m(x) \mathrm{d} x \\
& \mu=\sum_{i} \mu_{i} \delta_{x_{i}} \longrightarrow \\
& \int_{X} g \mathrm{~d} \mu=\sum_{i} \mu_{i} g\left(x_{i}\right)
\end{aligned}
$$

Probability (normalized) measure: $\mu(X)=\int_{X} \mathrm{~d} \mu(x)=1$

Probability Measures

Positive Radon measure μ on a set X.

$$
\mathrm{d} \mu(x)=m(x) \mathrm{d} x
$$

Measure of sets $A \subset X: \mu(A)=\int_{A} \mathrm{~d} \mu(x) \geqslant 0$
Integration against continuous functions: $\int_{X} g(x) \mathrm{d} \mu(x) \geqslant 0$

$$
\begin{aligned}
& \mathrm{d} \mu(x)=m(x) \mathrm{d} x \longrightarrow \\
& \mu=\sum_{i} g \mathrm{~d} \mu=\int_{X} m(x) \mathrm{d} x \\
& \mu_{x_{i}} \longrightarrow \int_{X} g \mathrm{~d} \mu=\sum_{i} \mu_{i} g\left(x_{i}\right)
\end{aligned}
$$

Probability (normalized) measure: $\mu(X)=\int_{X} \mathrm{~d} \mu(x)=1$

Weak convergence:

Discretization: Histogram vs. Empirical

Discrete measure: $\quad \mu=\sum_{i=1}^{N} \mu_{i} \delta_{x_{i}} \quad x_{i} \in X, \quad \sum_{i} \mu_{i}=1$

Lagrangian (point clouds)
Constant weights $\mu_{i}=\frac{1}{N}$

Quotient space:

$$
X^{N} / \Sigma_{N}
$$

Eulerian (histograms)
Fixed positions x_{i} (e.g. grid)

Convex polytope (simplex):

$$
\left\{\left(\mu_{i}\right)_{i} \geqslant 0 ; \sum_{i} \mu_{i}=1\right\}
$$

Push Forward

Radon measures (μ, ν) on (X, Y).
Transfer of measure by $f: X \rightarrow Y$: push forward.

$$
\begin{aligned}
& \nu(A) \stackrel{\text { def. }}{=} \mu\left(f^{-1}(A)\right) \\
\Longleftrightarrow & \int_{Y} g(y) \mathrm{d} \nu(y) \stackrel{\text { def. }}{=} \int_{X} g(f(x)) \mathrm{d} \mu(x)
\end{aligned}
$$

$\nu=f_{\sharp} \mu$ defined by:

Push Forward

Radon measures (μ, ν) on (X, Y).
Transfer of measure by $f: X \rightarrow Y$: push forward.

$$
\begin{aligned}
& \nu(A) \stackrel{\text { def. }}{=} \mu\left(f^{-1}(A)\right) \\
\Longleftrightarrow & \int_{Y} g(y) \mathrm{d} \nu(y) \stackrel{\text { def. }}{=} \int_{X} g(f(x)) \mathrm{d} \mu(x)
\end{aligned}
$$

$\nu=f_{\sharp} \mu$ defined by:

Smooth densities: $\mathrm{d} \mu=\rho(x) \mathrm{d} x, \mathrm{~d} \nu=\xi(x) \mathrm{d} x$

$$
f_{\sharp} \mu=\nu \Longleftrightarrow \rho(f(x))|\operatorname{det}(\partial f(x))|=\xi(x)
$$

Monge Transport

$$
\min _{\nu=f_{\sharp} \mu} \int_{X} c(x, f(x)) \mathrm{d} \mu(x)
$$

Monge Transport

$$
\min _{\nu=f_{\sharp} \mu} \int_{X} c(x, f(x)) \mathrm{d} \mu(x)
$$

Theorem: [Brenier] for $c(x, y)=\|x-y\|^{2},(\mu, \nu)$ with density, there exists a unique optimal f. One has $f=\nabla \psi$ where ψ is the unique convex function such that $(\nabla \psi)_{\sharp \mu}=\nu$

Monge Transport

$$
\min _{\nu=f_{\sharp} \mu} \int_{X} c(x, f(x)) \mathrm{d} \mu(x)
$$

Theorem: [Brenier] for $c(x, y)=\|x-y\|^{2},(\mu, \nu)$ with density, there exists a unique optimal f. One has $f=\nabla \psi$ where ψ is the unique convex function such that $(\nabla \psi)_{\sharp \mu}=\nu$

Monge-Ampère equation: $\quad \rho(\nabla \psi) \operatorname{det}\left(\partial^{2} \psi\right)=\xi$

Monge Transport

$$
\min _{\nu=f_{\sharp} \mu} \int_{X} c(x, f(x)) \mathrm{d} \mu(x)
$$

Theorem: [Brenier] for $c(x, y)=\|x-y\|^{2},(\mu, \nu)$ with density, there exists a unique optimal f. One has $f=\nabla \psi$ where ψ is the unique convex function such that $(\nabla \psi)_{\sharp} \mu=\nu$

Monge-Ampère equation: $\quad \rho(\nabla \psi) \operatorname{det}\left(\partial^{2} \psi\right)=\xi$ Non-uniqueness / non-existence:

Kantorovitch's Formulation

Input distributions

$$
\begin{aligned}
\mu & =\sum_{i} \mu_{i} \delta_{x_{i}} \\
\nu & =\sum_{j} \nu_{j} \delta_{y_{j}}
\end{aligned}
$$

Points $\left(x_{i}\right)_{i},\left(y_{j}\right)_{j}$
Weights $\mu_{i} \geqslant 0, \nu_{j} \geqslant 0$.
$\sum_{i=1}^{N_{1}} \mu_{i}=\sum_{j=1}^{N_{2}} \nu_{j}=1 \quad d_{i, j}=d\left(x_{i}, y_{j}\right)$
Def. Couplings
$\mathcal{C}_{\mu, \nu} \stackrel{\text { def. }}{=}\left\{T \in \mathbb{R}_{+}^{N_{1} \times N_{2}} ; T \mathbb{1}_{N_{1}}=\mu, T^{\top} \mathbb{1}_{N_{2}}=\nu\right\}$

Kantorovitch's Formulation

Input distributions

$$
\begin{aligned}
\mu & =\sum_{i} \mu_{i} \delta_{x_{i}} \\
\nu & =\sum_{j} \nu_{j} \delta_{y_{j}}
\end{aligned}
$$

Points $\left(x_{i}\right)_{i},\left(y_{j}\right)_{j}$
Weights $\mu_{i} \geqslant 0, \nu_{j} \geqslant 0$.
$\sum_{i=1}^{N_{1}} \mu_{i}=\sum_{j=1}^{N_{2}} \nu_{j}=1 \quad d_{i, j}=d\left(x_{i}, y_{j}\right)$
Def. Couplings
$\mathcal{C}_{\mu, \nu} \stackrel{\text { def. }}{=}\left\{T \in \mathbb{R}_{+}^{N_{1} \times N_{2}} ; T \mathbb{1}_{N_{1}}=\mu, T^{\top} \mathbb{1}_{N_{2}}=\nu\right\}$

Def. Wasserstein Distance / EMD
$W_{p}^{p}(\mu, \nu) \stackrel{\text { def. }}{=} \min \left\{\sum_{i, j} T_{i, j} d_{i, j}^{p} ; T \in \mathcal{C}_{\mu, \nu}\right\}$
[Kantorovich 1942]
$\rightarrow W_{p}$ is a distance over Radon probability measures.

What's next

Marco Cuturi: fast entropic numerical solvers, applications.

Nicolas Courty: Optimal Transport for machine learning.

