Computational Optimal Transport

Gabriel Peyré

Marco Cuturi

École nationale de la statistique et de l'administration économique

Nicolas Courty

Comparing Probability Distributions

• Probability distributions and histograms \rightarrow images, vision, graphics and machine learning, ...

Comparing Probability Distributions

• Probability distributions and histograms \rightarrow images, vision, graphics and machine learning, ...

• Optimal transport \rightarrow takes into account a metric d.

Comparing Probability Distributions

• Probability distributions and histograms \rightarrow images, vision, graphics and machine learning, ...

• Optimal transport \rightarrow takes into account a metric d.

Optimal transport mean

Positive Radon measure μ on a set X.

Measure of sets $A \subset X$: $\mu(A) = \int_A d\mu(x) \ge 0$

Positive Radon measure μ on a set X.

Measure of sets $A \subset X$: $\mu(A) = \int_A d\mu(x) \ge 0$

Integration against continuous functions: $\int_X g(x) d\mu(x) \ge 0$ $d\mu(x) = m(x) dx \longrightarrow \int_X g d\mu = \int_X m(x) dx$ $\mu = \sum_i \mu_i \delta_{x_i} \longrightarrow \int_X g d\mu = \sum_i \mu_i g(x_i)$

Positive Radon measure μ on a set X.

Measure of sets $A \subset X$: $\mu(A) = \int_A d\mu(x) \ge 0$

Integration against continuous functions: $\int_X g(x) d\mu(x) \ge 0$ $d\mu(x) = m(x) dx \longrightarrow \int_X g d\mu = \int_X m(x) dx$ $\mu = \sum_i \mu_i \delta_{x_i} \longrightarrow \int_X g d\mu = \sum_i \mu_i g(x_i)$

Probability (normalized) measure: $\mu(X) = \int_X d\mu(x) = 1$

Positive Radon measure μ on a set X.

Measure of sets $A \subset X$: $\mu(A) = \int_A d\mu(x) \ge 0$

Integration against continuous functions: $\int_{\mathbf{X}} g(x) d\mu(x) \ge 0$ $\longrightarrow \quad \int_X g \mathrm{d}\mu = \int_X m(x) \mathrm{d}x$ $d\mu(x) = m(x)dx$ $\mu = \sum_{i} \mu_i \delta_{x_i} \quad \longrightarrow \quad \int_{\mathbf{V}} g d\mu = \sum_{i} \mu_i g(x_i)$ Probability (normalized) measure: $\mu(X) = \int_{\mathbf{v}} d\mu(x) = 1$ Weak convergence:

Discretization: Histogram vs. Empirical Discrete measure: $\mu = \sum \mu_i \delta_{x_i}$ $x_i \in X$, $\sum \mu_i = 1$ i=1Lagrangian (point clouds) Eulerian (histograms) Constant weights $\mu_i = \frac{1}{N}$ Fixed positions x_i (e.g. grid) Convex polytope (simplex): Quotient space:

 X^N / Σ_N

$\{(\mu_i)_i \ge 0 \ ; \ \sum_i \mu_i = 1\}$

Push Forward

Radon measures (μ, ν) on (X, Y).

Transfer of measure by $f: X \to Y$: push forward.

$$\nu = f_{\sharp}\mu \text{ defined by:} \qquad \qquad \nu(A) \stackrel{\text{def.}}{=} \mu(f^{-1}(A)) \\ \iff \int_{Y} g(y) \mathrm{d}\nu(y) \stackrel{\text{def.}}{=} \int_{X} g(f(x)) \mathrm{d}\mu(x)$$

Push Forward

Radon measures (μ, ν) on (X, Y).

Transfer of measure by $f: X \to Y$: push forward.

$$\nu = f_{\sharp}\mu \text{ defined by:} \qquad \qquad \nu(A) \stackrel{\text{def.}}{=} \mu(f^{-1}(A)) \\ \iff \int_{Y} g(y) d\nu(y) \stackrel{\text{def.}}{=} \int_{X} g(f(x)) d\mu(x)$$

Smooth densities: $d\mu = \rho(x)dx$, $d\nu = \xi(x)dx$ $f_{\sharp}\mu = \nu \iff \rho(f(x))|\det(\partial f(x))| = \xi(x)$

Monge Transport

 $\min_{\boldsymbol{\nu}=f_{\sharp}\boldsymbol{\mu}} \int_{X} c(x, f(x)) \mathrm{d}\boldsymbol{\mu}(x)$

is the unique convex function such that $(\nabla \psi)_{\sharp} \mu = \nu$

Monge-Ampère equation: $\rho(\nabla \psi) \det(\partial^2 \psi) = \xi$

Kantorovitch's Formulation

Kantorovitch's Formulation

 $\rightarrow W_p$ is a distance over Radon probability measures.

What's next

Marco Cuturi: fast entropic numerical solvers, applications.

Nicolas Courty: Optimal Transport for machine learning.

