
Computational  
Optimal Transport

Gabriel Peyré     Marco Cuturi     Nicolas Courty

ÉCOLE NORMALE
S U P É R I E U R E

RESEARCH  UNIVERSITY  PARIS



Comparing Probability Distributions

Optimal transport framework Sliced Wasserstein projection Applications

Application to Color Transfer

Source image (X )

Style image (Y )

Sliced Wasserstein projection of X to style
image color statistics Y

Source image after color transfer

J. Rabin Wasserstein Regularization

! images, vision, graphics and machine learning, . . .

• Probability distributions and histograms



Comparing Probability Distributions

Optimal transport framework Sliced Wasserstein projection Applications

Application to Color Transfer

Source image (X )

Style image (Y )

Sliced Wasserstein projection of X to style
image color statistics Y

Source image after color transfer

J. Rabin Wasserstein Regularization

! images, vision, graphics and machine learning, . . .

• Probability distributions and histograms

• Optimal transport



Comparing Probability Distributions

Optimal transport framework Sliced Wasserstein projection Applications

Application to Color Transfer

Source image (X )

Style image (Y )

Sliced Wasserstein projection of X to style
image color statistics Y

Source image after color transfer

J. Rabin Wasserstein Regularization

! images, vision, graphics and machine learning, . . .

• Probability distributions and histograms

L2 mean Optimal transport mean

• Optimal transport



Probability Measures
Positive Radon measure µ on a set X.

dµ(x) = m(x)dx

Measure of sets A ⇢ X: µ(A) =

R
A dµ(x) > 0

X X X

µ =
P

i

µ
i

�
xi



Probability Measures
Positive Radon measure µ on a set X.

dµ(x) = m(x)dx

Integration against continuous functions:

R
X g(x)dµ(x) > 0

Measure of sets A ⇢ X: µ(A) =

R
A dµ(x) > 0

X X X

µ =
P

i

µ
i

�
xi

R
X gdµ =

R
X m(x)dx

R
X gdµ =

P
i µig(xi)

dµ(x) = m(x)dx

µ =
P

i

µ
i

�
xi



Probability Measures
Positive Radon measure µ on a set X.

dµ(x) = m(x)dx

Integration against continuous functions:

R
X g(x)dµ(x) > 0

Measure of sets A ⇢ X: µ(A) =

R
A dµ(x) > 0

X X X

Probability (normalized) measure:

µ(X) =
R
X dµ(x) = 1

µ =
P

i

µ
i

�
xi

R
X gdµ =

R
X m(x)dx

R
X gdµ =

P
i µig(xi)

dµ(x) = m(x)dx

µ =
P

i

µ
i

�
xi



Probability Measures
Positive Radon measure µ on a set X.

dµ(x) = m(x)dx

Integration against continuous functions:

R
X g(x)dµ(x) > 0

Measure of sets A ⇢ X: µ(A) =

R
A dµ(x) > 0

X X X

Weak convergence:

. . .

Probability (normalized) measure:

µ(X) =
R
X dµ(x) = 1

µ =
P

i

µ
i

�
xi

R
X gdµ =

R
X m(x)dx

R
X gdµ =

P
i µig(xi)

dµ(x) = m(x)dx

µ =
P

i

µ
i

�
xi



Quotient space:

Discrete measure:

Discretization: Histogram vs. Empirical

Lagrangian (point clouds) Eulerian (histograms)

µ =
NX

i=1

µ
i

�
xi

xi 2 X,

X

i

µi = 1

Constant weights µi =
1
N

XN/⌃N {(µi)i > 0 ;
P

i µi = 1}
Convex polytope (simplex):

xi

X X

Fixed positions xi (e.g. grid)



also reveal that the network simplex behaves in O(n2) in our con-
text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
study are also of broader interest, as current EMD image retrieval
or color transfer techniques rely on slower solvers [Rubner et al.
2000; Kanters et al. 2003; Morovic and Sun 2003].
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Figure 6: Log-log plot of the running times of different solvers.
The network simplex behaves as a O(n2) algorithm in practice
whereas the transport simplex runs in O(n3).

5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140�140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
more meaningful results [Rusinkiewicz 1998]. In practice, we ap-
ply log(1 + x) to remap the values so that the function remains

Figure 7: Synthetic 2D examples on a Euclidean domain. The
left and right columns show the input distributions, while the center
columns show interpolations for � = 1/4, � = 1/2, and � = 3/4.

positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
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(a) source domain (b) rotation=20� (c) rotation=40� (d) rotation=90�

Fig. 3: Illustration of the classification decision boundary produced by OT-Laplace over the two moons example

for increasing rotation angles. The source domain is represented as coloured points. The target domain is depicted

as points in grey (best viewed with colors).

tion [25], Webcam (images taken from a webcam) and

DSLR (images taken from a high resolution digital SLR

camera). The variability of the different domains come

from several factors: presence/absence of background,

lightning conditions, noise, etc. We consider two feature

sets:

• SURF descriptors as described in [42], used to

transform each image into a 800 bins histogram.

These histograms are subsequently normalized and

reduced to standard scores.

• two DeCAF deep learning features sets [19]: these

features are extracted as the sparse activation of the

neurons from the fully connected 6th and 7th layers

of a convolutional network trained on imageNet

and then fine tuned on the visual recognition tasks

considered here. As such, they form vectors with

4096 dimensions.

2) Experimental setup: Following [23], the classifi-

cation is conducted using a 1-Nearest Neighbor (1NN)

classifier, which has the advantage of being parameter

free. In all experiments, 1NN is trained with the adapted

source data, and evaluated over the target data to provide

a classification accuracy score. We compare our optimal
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PIE09 PIE 1632 1024 68 P3
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Fig. 4: Examples from the datasets used in the visual

adaptation experiment. 5 random samples from one class

are given for all the considered domains.
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(a) source domain (b) rotation=20� (c) rotation=40� (d) rotation=90�

Fig. 3: Illustration of the classification decision boundary produced by OT-Laplace over the two moons example

for increasing rotation angles. The source domain is represented as coloured points. The target domain is depicted

as points in grey (best viewed with colors).
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