

Organizing Deep Networks

Edouard Oyallon

advisor: Stéphane Mallat

following the works of Laurent Sifre, Joan Bruna, ...

collaborators: Eugene Belilovsky, Sergey Zagoruyko, Bogdan Cirstea, Jörn Jacobsen, ...

Classification of signals

- Let n > 0, $(X, Y) \in \mathbb{R}^n \times \mathcal{Y}$ random variables
- Problem: Estimate \hat{y} such that $\hat{y} = \arg\inf_{\tilde{y}} \mathbb{E}(|\tilde{y}(X) Y|)$
- We are given a training set $(x_i, y_i) \in \mathbb{R}^n \times \mathcal{Y}$ to build \hat{y}
- Say one can write $\hat{y} = \text{Classifier}(\Phi x)$, Classifier being built with $(\Phi x_i, y_i)$
- 3 ways to build Φ :
 Supervised Unsupervised

$$(x_i, y_i)_i$$

Unsupervised $(x_i)_i$

Predefined Geometric priors

$$\mathcal{Y} = \{ ullet, ullet \}$$
 $n = 2$ Classifier w

High Dimensional classification

 $(x_i, y_i) \in \mathbb{R}^{224^2} \times \{1, ..., 1000\}, i < 10^6 \longrightarrow \hat{y}(x)$?

"Rhinos"

Estimation problem

Training set to predict labels

"Rhino"

Not a "rhino"

High-dimensional variabilities

• Claim: In \mathbb{R}^n , $n \gg 1$, the variance is huge.

Ex.:

$$X \sim \mathcal{N}(0, I_n)$$
 then $\exists C > 0, \forall n, \mathbb{P}(||X|| \ge t)) \le 2e^{-\frac{t^2}{Cn}}$ $\mathbb{E}(X) = 0$

 Claim: Small deformations (not parametric) can have huge effects:

Ex.:
$$x \in L^2(\mathbb{R}^n), \tau \in \mathcal{C}^{\infty}$$
 define $L_{\tau}x(u) = x(u - \tau(u))$
 $\tau(u) = \epsilon, \mathcal{C} \subset \mathbb{R}^2, ||1_{\mathcal{C}} - L_{\tau}1_{\mathcal{C}}|| = 2$

 The variance is high, and the bias is difficult to estimate. There are also few available samples...

How to handle that?

$$||x - y||_2 = 2 \qquad \longleftarrow$$

Image variabilities

Geometric variability

Groups acting on images:

translation, rotation, scaling

Other sources: luminosity, occlusion, small deformations

$$L_{\tau}x(u) = x(u - \tau(u)), \tau \in \mathcal{C}^{\infty}$$

$$I \xrightarrow{I - \tau} f$$

Class variability

Intraclass variability
Not informative

Extraclass variability

High variance: how to reduce it?

Fighting the curse of dimensionality

• **Objective:** building a representation Φx of x such that a simple (say euclidean) classifier \hat{y} can estimate the label y:

• Designing Φ consist of building an approximation of a low dimensional space which is regular with respect to the class:

$$\|\Phi x - \Phi x'\| \ll 1 \Rightarrow \hat{y}(x) = \hat{y}(x')$$

Necessary dimensionality reduction

Averaging makes euclidean distance meaningful in high dimension

An example: Invariance to translation

Translation operator $L_a x(u) = x(u-a)$

• In many cases, one wish to be invariant globally to translation, a simple way is to perform an averaging:

$$Ax = \int L_a x da = \int x(u) du$$
 It's the o frequency! $AL_a = A$

• Even if it can be localized, the averaging keeps the low frequency structures: the invariance brings a loss of information!

Bias issue! How do we recover the missing information?

Necessary mechanism: Separation - Contraction

• In high dimension, typical distances are huge, thus an appropriate representation must contract the space:

$$\|\Phi x - \Phi x'\| \le \|x - x'\|$$

While avoiding the different classes to collapse:

$$\exists \epsilon > 0, y(x) \neq y(x') \Rightarrow \|\Phi x - \Phi x'\| \geq \epsilon$$

Deep learning: Technical breakthrough

- Deep learning has permitted to <u>solve</u> a large number of task that were considered as extremely challenging for a computer.
- The technique that is used is **generic** and its success implies that it reduces those sources of variability.
- Previous properties hold for deep learning.
- How, why?

interpret

Why mathematics about deep learning are important • Pure black box. Few mathematical results are available.

Pure black box. Few mathematical results are available.
 Many rely on a "manifold hypothesis". Clearly wrong:
 Ex: stability to diffeomorphisms

- No stability results. It means that "small" variations of the inputs might have a large impact on the system. And this happens.

 Ref.: Intriguing properties of neural networks.

 C. Szegedy et al.
- No generalisation result. Rademacher complexity can not explain the generalization properties.

Ref.: Understanding deep learning requires rethinking generalization C. Zhang et al.

 Shall we learn each layer from scratch? (geometric priors?) The deep cascade makes features are hard to

Ref.: Deep Roto-Translation Scattering for Object Classification. EO and S Mallat

Organization is a key

• Consider a problem of questionnaires: people answer to o or I to some question. What does structuration

means? Ref.: Harmonic Analysis of Digital Data Bases Coifman R. et al. In general, structuration à changer Organizi Questions works tackle only one of the aspect **Answers** Answers Both Organizing answers neighbours become meaningful: local metrics Answers Answers

Organization permits creation of invariance

• As (all) the sources of regularities are obtained, interpolating new points is possible (in statistical terms: generalisation property!)

 In the previous case, one can build a discriminative and invariant representation: Haar wavelets on graphs for

example.

Ref.: Harmonic Analysis of Digital Data Bases Coifman R. et al.

Organising the CNN representation: Local Support Vectors

· Let's consider a CNN of depth J.

Ref.: Building a Regular Decision Boundary with Deep Networks

Local dimension is intractable!

 Local Support Vectors of order k at depth j: representations at depth j that are well classified by a k-NN but not by a l-NN for l<k

· They give a measure of the separation-contraction via:

$$\Gamma_{j}^{k+1} = \left\{ x_{j} \in \Gamma_{j}^{k} | \operatorname{card}\{y(x_{j}^{(l)}) \neq y(x_{j}^{(l)}), l \leq k+1 \} > \frac{k}{2} \right\}$$
 $x_{j}^{(l)}$: l-NN at depth j

Complexity measure

of k-local support vectors at different depth n

An organisation of the representation

• There is a progressive localisation which explains why a I-NN (or a Gaussian SVM) works better with depth:

linear metrics are more meaningful in low dimension

How do the representation got localized? Necessary variability reduction

Identifying the variabilities?

Several works showed a Deepnet exhibits some covariance:

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

· Manifold of faces at a certain depth:

Can we use these?

Ref.: Unsupervised Representation Learning with Deep Convolutional GAN, Radford, Metz & Chintalah

Linearizing variabilities

Weak differentiability property:

$$\sup_{L} \frac{\|\Phi Lx - \Phi x\|}{\|Lx - x\|} < \infty \Rightarrow \exists \text{ "weak" } \partial_x \Phi$$

$$\Rightarrow \Phi Lx \approx \Phi x + \partial_x \Phi L + o(\|L\|)$$
 A linear operator

A linear projection (to kill L) build an invariant

example: Scattering Transform

Symmetry group hypothesis

Ref.: Understanding deep convolutional networks S Mallat

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

 We hypothesise there exists Lie groups and CNNs such that:

$$G_0 \subset G_1 \subset ... \subset G_J \subset G$$

 $\forall g_j \in G_j, \phi_j(g_j.x) = \phi_j(x) \text{ where } x_j = \phi_j(x)$

Examples are given by the euclidean group:

$$G_0 = \mathbb{R}^2, G_1 = G_0 \ltimes SL_2(\mathbb{R})$$

Structuring the input with the Scattering Transform

- Scattering Transform S_J is a local descriptor of neighbourhood of amplitude 2^J .
- It is a representation built via geometry with limited learning. (~SIFT)

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

Successfully used in several applications:

444444

Digits

444444444 5555555 77777777 888888888 All variabilities are known

Small deformations +Translation

Rotation+Scale

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

Textures

Wavelets

• Wavelets help to describe signal structures. ψ is a wavelet iff

$$\psi \in \mathcal{L}^2(\mathbb{R}^2, \mathbb{C}) \text{ and } \int_{\mathbb{R}^2} \psi(u) du = 0$$

- They are chosen localised in space and frequency.
- Wavelets can be dilated in order to be a **multi-scale** representation of signals, **rotated** to describe rotations.

 1 $-r_0(u)$

$$\psi_{j,\theta} = \frac{1}{2^{2j}} \psi(\overline{\frac{r_{\theta}(u)}{2^j}})$$

• Design wavelets selective to an **informative** variability.

 $|\hat{\psi}|$

 $|\hat{\psi}|$

Non-Isotropic

$$\psi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}} (e^{i\xi.u} - \kappa) \qquad \qquad \phi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}} e^{-\frac{\|u\|^2$$

(for sake of simplicity, formula are given in the isotropic case)

The Gabor wavelet

 ω_1

Wavelet Transform

- Wavelet transform: $Wx = \{x \star \psi_{j,\theta}, x \star \phi_J\}_{\theta,j \leq J}$
- Isometric and linear operator of L^2 , with

$$||Wx||^2 = \sum_{\theta,j < J} \int |x \star \psi_{j,\theta}|^2 + \int x \star \phi_J^2$$

• Covariant with translation L_a :

$$WL_a = L_aW$$

Nearly commutes with diffeomorphisms

$$||[W, L_{\tau}]|| \leq C||\nabla \tau||$$

Ref.: Group Invariant Scattering, Mallat S

A good baseline to describe an image!

Filter bank implementation of a Fast WT

Ref.: Fast WT, Mallat S, 89

• Assume it is possible to find h and g such that

$$\hat{\psi}_{\theta}(\omega) = \frac{1}{\sqrt{2}} \hat{g}_{\theta}(\frac{\omega}{2}) \hat{\phi}(\frac{\omega}{2}) \quad \text{and} \quad \hat{\phi}(\omega) = \frac{1}{\sqrt{2}} \hat{h}(\frac{\omega}{2}) \hat{\phi}(\frac{\omega}{2})$$

• Set:

$$x_j(u,0) = x \star \phi_j(u) = h \star (x \star \phi_{j-1})(2u)$$
 and $x_j(u,\theta) = x \star \psi_{j,\theta}(u) = g_\theta \star (x \star \phi_{j-1})(2u)$

- The WT is then given by $Wx = \{x_i(.,\theta), x_J(.,0)\}_{i < J,\theta}$
- A WT can be interpreted as a **deep cascade** of linear operator, which is approximatively verified for the Gabor Wavelets.

$$\hat{\phi}_j = \frac{1}{\sqrt{2}}\hat{h}(\dot{\frac{\cdot}{2}})\hat{\phi}_{j-1}$$

$$\hat{\phi}_j = \frac{1}{\sqrt{2}} \hat{h}(\frac{\cdot}{2}) \hat{\phi}_{j-1}$$

$$\hat{\psi}_{j,\theta} = \frac{1}{\sqrt{2}} \hat{g}_{\theta}(\frac{\cdot}{2}) \hat{\phi}_{j-1}$$

Implementation of a WT

Scattering Transform

• Scattering transform at scale J is the cascading of complex WT with modulus non-linearity, followed by a low pass-filtering:

$$S_{J}x = \{x \star \phi_{J}, \quad \text{with } \lambda_{i} = \{j_{i}, \theta_{i}\}, j_{i} \leq J$$
$$|x \star \psi_{\lambda_{1}}| \star \phi_{J},$$
$$||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{J}\}$$

• **Mathematically** well defined for a large class of wavelets.

Scattering as a CNN

Ref.: Deep Roto-Translation Scattering for Object Classification. EO and S Mallat

Analytic wavelets and modulus?

For any translations :

Ref.: Group Invariant Scattering, Mallat S

 $|\psi(\omega)|_{
m 1}$

· A modulus removes the phase!

the infinitesimal generator of translations is the derivative...

Non-linear projection

Information loss Reconstruction

Ref.: Mallat S, Bruna J

 ${\mathcal X}$

Wavelets on Lie group

 Discovering more complex groups is necessary to build more complex invariants:

Ref.: Deep Roto-Translation Scattering for Object Classification. EO and S Mallat

$$\mathbb{R}^2 \hookrightarrow SO_2(\mathbb{R}) \rtimes \mathbb{R}^2 \hookrightarrow \dots$$

- A wavelet is defined by $\psi \in L^2(G), \hat{\psi}(e) = 0$ and can be dilated via $\psi_{\lambda} = L_{\lambda} \psi$
- **Theorem**: Let *G* be a compact Lie group, for appropriate mother wavelet ψ and Λ then

$$Wx = \{ \int_G x, x \star^G \psi_\lambda \}_{\lambda \in \Lambda}$$

is an isometry and covariant with the action of G

Ref.: Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory.

Proposition: W almost commutes with deformations but is not invariant to translation...

$$\|[W,L_{ au}]\| < C \| au\|$$
 Ref.: Grou

An ideal input for a modern CNN

$L_{\tau}x(u) = x(u - \tau(u))$

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

Linearize small deformations:

$$||S_J L_\tau x - S_J x|| \le C||\nabla \tau|| ||x||$$

Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks EO, E Belilovsky, S Zagoruyko

Invariant by local translation:

$$|a| \ll 2^J \Rightarrow S_J L_a x \approx S_J$$

• For λ , u, $S_J x(u, \lambda)$ has a topology that is **structured** by $SO_2(\mathbb{R})$, and this structures the first layer also:

if
$$\forall u \forall g \in SO_2(\mathbb{R}), g.x(u) \triangleq x(g^{-1}u)$$
 then,

$$S_J(g.x)(u,\lambda) = S_Jx(g^{-1}u,g^{-1}\lambda) \triangleq g.S_Jx(u,\lambda)$$

Ref.: Deep Roto-Translation Scattering

How much learning is really

required?

Dataset	Туре	Paper	for Object Classification. EO and Accuracy	S Mal
Caltech101	Scattering		79.9	7
	Unsupervised	Ask the locals	77.3	
	Supervised	DeepNet	91.4	
CIFAR100	Scattering		56.8	
	Unsupervised	RFL	54.2	
	Supervised	DeepNet	65.4	
4 images [Iden Represe	

10⁴ images 101 classes | CALTECH|

 256×256 color images

CIFAR 5.10⁴ images classes classes 2 color images

Group representations are competitive with representations learned from data without labels

Benchmarking ImageNet

Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

• Cascading a modern CNN leads to almost state-of-theart result on Imagenet2012:

Method	Top 1	Top 5	Params
AlexNet	56.9	80.1	61M
VGG-16	68.5	88.7	138M
Scat + Resnet-10 (ours)	68.7	88.6	12.8M
Resnet-18 (ours)	68.9	88.8	11.7M
Resnet-200	78.3	94.2	64.7M

Demonstrates no loss of information + Less layers

Shared Local Encoder

 1×1 convolution

 It is equivalent to encode the non-overlapping scattering patches: the output of the IXI is a local descriptor of an image that leads to AlexNet performances.

Good generalization on Caltechioi

Method	Top 1	Top 5
FV + FC	55.6	78.4
FV + SVM	54.3	74.3
AlexNet	56.9	80.1
Scat + SLE	57.0	79.6

DATABenchmarking

(36)

Small data

Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks

- Adding geometric prior regularises the CNN input, in the particular case of limited samples situations, without reducing the number of parameters.
- State-of-the-art results on STL10 and CIFAR10:

STL10: 5k training, 8k testing, 10 classes +100k unlabeled(not used!!)

Method	Accuracy
Supervised methods	
Scat + WRN 19-8	$ 76.0 \pm 0.6 $
CNN	70.1 ± 0.6
Unsupervised methods	
Exemplar CNN	75.4 ± 0.3
Stacked what-where AE	74.33
Hierarchical Matching Pursuit (HMP)	64.5±1
Convolutional K-means Network	60.1±1

Cifar10, 10 classes keeping 100, 500 and 1000 samples and testing on 10k

EO, E Belilovsky, S Zagoruyko

Method	100	500	1000
WRN 16-8	34.7 ± 0.8		
Scat + WRN 12-8	$\textbf{38.9} \pm \textbf{1.2}$	54.7±0.6	62.0 ± 1.1

Invariance to rotation

Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

• We evaluate the angular energy propagated for given frequencies: $\Omega(\omega_{\theta_1}, \omega_{\theta_2}) = \sum |W_1(., \omega_{\theta_1}, \omega_{\theta_2})|^2$

• They are all localised in the low-frequency domain: invariance to rotation is learned. (supports symmetry group hypothesis)

Multiscale Hiearchical CNN

Can we structure the next layers?

Ref.: Multiscale Hierarchical Convolutional Networks J Jacobsen, EO, S Mallat, Smeulders AWM

• Introduce a CNN that is convolutional along each direction, finally averaged:

$$x_{j+1} = \rho_j W_j x_j$$

$$x_{j+1}(v_1, ..., v_j, v_{j+1}) = \rho_j (x_j \star^{v_1, ..., v_j} \psi_{v_{j+1}})(v_1, ..., v_j)$$

$$x_J = \sum_{v_j, j \le J-2} x_{J-1}(v_1, ..., v_{J-1})$$

- For x_j , we refer to the variable v_j as an attribute that discriminates previously obtained tensor.
- W_j performs an averaging along v_{j-2} .

J Jacobsen, EO, S Mallat, Smeulders AWM

Flattening the variability

- An explicit invariant of any translations along $(v_1,...,v_j)$ is built.
- Completely structures the axis of the "channels" via convolutions.
- It aims at mapping the symmetries of $\Phi x = x_J$ into the translations along $G_j = \mathbb{R}^j, j \leq J$.

Organizing the channels indexes

Reducing the number of parameters

Ref.: Multiscale Hierarchical Convolutional Networks J Jacobsen, EO, S Mallat, Smeulders AWM

CIFARIO

MODEL	# PARAMETERS	% ACCURACY
HIEARCHICAL CNN HIEARCHICAL CNN (+) ALL-CNN	0.098M 0.34M 1.3M	91.43 92.50 92.75
RESNET NETWORK IN NETWORK WRN-STUDENT FITNET	0.27M 0.98M 0.17M 2.5M	91.25 91.20 91.23 91.61

This implies an effective structuration

CIFAR100

MODEL	# PARAMETERS	% ACCURACY
HIEARCHICAL CNN	0.25M	62.01
HIEARCHICAL CNN (+)	0.89M	63.19
ALL-CNN	1.3M	66.29
NETWORK IN NETWORK	0.98M	64.32
FITNET	2.5M	64.96

Organization of the representation?

Ref.: Multiscale Hierarchical Convolutional Networks J Jacobsen, EO, S Mallat, Smeulders AWM

 We observe that representations at several layers are translated:

Conclusion

- Structuration should be the topic of future research to improve Deep neural networks
- Check my webpage for softwares and papers: http://www.di.ens.fr/~oyallon/

Thank you!