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following the works of Laurent Sifre, Joan Bruna, ...

collaborators: Eugene Belilovsky, Sergey Zagoruyko, Bogdan Cirstea, Jorn Jacobsen, ...



- Problem: Estimate § such that § = arg inf; E(

D :
Classification of signals

. Let n >0, (X,Y) € R" XY random variables

y(X) = Y])

- We are given a training set (i, 9;) € R™ X YVto build ¥

+ Say one can write § = Classifier(®x), Classifier being

built with (D, y;)

- 3 ways to build &:

Supervised Unsupervised Predefined
(4, Yi)i () Geometric priors

y — { 7.} o ’ o °
T — 2 o o W$ o
Classifier w



& DATA
“ High Dimensional classification
(23, 5;) € R??Y x {1,...,1000},i < 106 — §(x)?

Estimation problem

Training set to
predict labels

Not a "rhino"



ﬁ ° ° DA:rA ° oY o Lo
exs - High-dimensional variabilities
- Claim: In R",n > 1 the variance is huge.
Ex.:

2

X ~ N(0,1,) then 3C' > 0,¥n, P(|| X || > 1)) < 2¢~ &7
(X)) =0
+ Claim: Small deformations (not parametric) can have

huge eftects:

Ex.: €T & Lz(Rn),T - COO define LTZ'(U,) — z(u — T(U))
T(U) — G,C C RQ) HlC — L7'1CH = 2

» The variance is high, and the bias is difficult to
estimate. There are also few available samples...

How to handle that?
X y




DATA
Image variabilities

Geometric variability Class variability

Groups acting on images:

translation, rotation, scaling

. Intraclass variability
\ Not informative

Other sources : luminosity, occlusion, Extraclass Val‘lablllty

small deformations

Lyx(u)=x(u—71(u)), € C™

T [—7’>.)

High variance: how to reduce it?
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Fighting the curse of

dimensionality

- Objective: building a representation ®x of x such that a

simple (say euclidean) classifier § can estimate the

label v: )
’ ’ o . "
.D ° . ¢ D =>> d o o \5 °
R Rd

- Designing ¢ consist of building an approximation of a

low dimensional space which is regular with respect to

the class:
|dxr — P2’ || K 1= g(x) = ()

- Necessary dimensionality reduction
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Translation

i -

X |z —yl|l2 =2

@ Rotation @ /

Averaging is the key
_to get invariants

X

Y
Averaging makes euclidean distance

meaningful in high dimension
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An example: Invariance to

translation

Translation operator
Lox(u) = x(u — a)

- In many cases, one wish to be invariant globally to translation, a
simple way is to perform an averaging:

Ax = /Laa:‘da = /a:(u)du [t’s the o frequency!
AL, = A

- Even it it can be localized, the averaging keeps the low frequency

structures: the invariance brings a loss of information!

A

fledceFrance
- Bias issue! How do we recover the missing information?



F i} DATA .
ENS Necessary mechanism:

Separation - Contraction

- In high dimension, typical distances are huge, thus an
appropriate representation must contract the space:

|z — @' < |z — 2|

» ’

- While avoiding the different classes to collapse:
Je > 0,y(x) # y(a') = ||Px — 2’| > €

/) €
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o Deep learning: Technical

breakthrough

- Deep learning has permitted to solve a large number of
task that were considered as extremely challenging for a
computer.

- The technique that is used is generic and its success
implies that it reduces those sources of variability.

- Previous properties hold for deep learning.

- How, why?
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non-linear operator linear operator
\ /

xj_|_1 — ,OjoQZ‘j

Classifier

T = O

A 5 (U ))The kernel
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Why mathematics about deep

learning are important

Pure black box. Few mathematical résults are available.
Many rely on a "manifold hypothesis". Clearly wrong:
Ex: stability to diffeomorphisms

10

No stability results. It means that "small" variations of
the inputs might have a large impact on the system.
And thi S hap p e n S J Ref.: Intriguing properties of neural networks.

C. Szegedy et al.

No generalisation result. Rademacher complexity can
not explain the generalization properties.

Ref.: Understanding deep learning requires rethinking generalization
C. Zhang et al.

Shall we learn each layer from scratch? (geometric
priors?) The deep cascade makes features are hard to

Ref.: Deep Roto-Translation Scattering

[ ]
lnterp ret for Object Classification. EO and S Mallat
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Organization is a key

- Consider a problem of questionnaires: people answer to
0 or I to some question. What does structuration

meanse
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Answers

Organizing
answers

Questions

Answers

Ref.: Harmonic Analysis of Digital Data Bases
Coifman R. et al.

structuration a changer Feied ;
Organizi S l
Answers
Both
\ 4

Answers

In general,
works tackle only
one of the aspect

neighbours

-+ become meaningful:

local metrics
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NS OQrganization permits creation of

invariance

- As (all) the sources of regularities are obtained,
interpolating new points is possible (in statistical

terms: generalisation property!)

\‘\regularity ". -\‘ /./

- In the previous case, one can build a discriminative and
invariant representation: Haar wavelets on graphs for

example.

....................................................

............................................
|||||||||||

Ref.: Harmonic Analysis of Digital Data Bases

1
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I SO S SO S S S Coifman R. et al.
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F i)
NS Organising the CNN representation:

Local Support Vectors

Ref.: Building a Regular Decision

o Let)s Consider a CNN Of depth ]'. Boundarywitl;é)eep Networks
Local dimension is intractable!

» Local Support Vectors of order k at depth j:
representations at depth j that are well classified by a k-

NN but not by a I-NN for I<k

o A
2-LSV 4-LSV 0-LSV k-LSV, k>6

+ They give a measure of the separation-contraction via:

l z k
PEH = L) € Thlcard{y(a}") # y(z'), 1 <k +1} > 5

a;él) I-NN at depth j
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Complexity measure

# of k-local support vectors at difterent depth n

14000 .
n=2 N=06 n=10
T n=3 n=7 m— n=11_
n=4 n=8 — n=12
n=5 n=9 — n=13

10000

8000 - indicates high complexity

(separation)

L

6000

4000 - ——

\
2000 B\~
/ =
O ] 1 1 ] ]
~ Small amount 0; 5 10 15 20 25 30
indicates contraction K
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An organisation of the

representation

- There is a progressive localisation which explains why a
1-NN (or a Gaussian SVM) works better with depth:

90 - -

80

linear metrics are
more meaningful
in low dimension

70

% accuracy

60 |

- Accuracy of the CNN |.
e NN
e o SVYM

50

40
2

1 1 1 1
A B a 10 12
n

- How do the representation got localized? Necessary
variability reduction
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[dentifying the variabilities?

- Several works showed a Deepnet exhibits some

ENS

covariance:
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(a) Lighting (b) Scale

(c) Object color (d) Background color
Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

- Manifold of faces at a certain depth:
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Ref.: Unsupervised Representation Learning with Deep Convolutional GAN
Radford, Metz & Chintalah

. Can we use these?
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Linearizing variabilities

- Weak difterentiability property:

OLr — P
sup | LfE d < o0 = d "weak” 0,
Lo Lr =zl L §r~ bz + 0,8 + of||L]|)

A linear operator

Displacement [,

- A linear projection (to kill L) build an invariant

o o
] L[] > ‘
+ projection o

example:
Scattering Transtform
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Symmetry group hypothesis

Ref.: Understanding deep
convolutional networks
S Mallat

» To each classification problem corresponds a canonic

and unique symmetry group G: - High dimensional

Ve, Vg € G, Px = Pg.x

+ We hypothesise there exists Lie groups and CNNs such

that:
GocGicCc..cGjyCd@G

Vg, € Gj,¢0i(g9;.x) = ¢;(x) where z; = ¢;(z)

- Examples are given by the euclidean group:

GO = RQ,Gl — GO X SLQ(R)
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Structuring the input with

the Scattering Transtorm

+ Scattering Transform S is a local descriptor of
neighbourhood of amplitude 27,

- Itis a representation built via geometry with limited
learning. (~SIFT)

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

- Successtully used in several applications: All variabilities
¥ Y <y 4 Yy are known
’ DlgltS S 5 3 5 5 ‘Smeformatlons
7 7 '7 7 +Translation
48 5 a

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L. and Mallat S.

« Textures

“//Rotatlon+Scale
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Wavelets

Wavelets help to describe signal structures. ¢ is a

wavelet iff
Y € L2(R?,C) and 4, ¥(u)du = 0
They are chosen localised in space and frequency.

Wavelets can be dilated in order to be a multi-scale

representation of signals, rotateﬂ to describe
V5.0

rotations. 1 —re(u) »

Design wavelets selective to an informative

variability. .
| w ‘ Non-Isotropic

Isotropic ‘ | w | VS -
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" ¥ ¥y F &= = %N &
NEFE 2 AR
Vi #Z#=s\\

Y(u) = —e” 2 (e — k) H(u) = —— e~ 5o

1 Jlu]®
27TU Heisenberg 27TO-

principlel!
Good localisation in
space and Fourier

(for sake of simplicity, formula
are given in the isotropic case)

The Gabor wavelet
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Wavelet Transform

* Wavelet transform : Wz ={z %19, 2% }0 i<

AW2
* Isometric and linear operator of L with a - g
Walp = 3 [lowvgal+ [oey W GAe
sd . WS
* Covariant with translation L: -
WL, =LW ye
* Nearly commutes with diffeomorphisms
|[W, L.]| < C|VT| Ret: Group Invariant Seattring, Mallat S

* A good baseline to describe an image!
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s Filter bank implementation

of a Fast WT

* Assume it is possible to find 7 and 9 such that
Uow) = —sio(5)6(3)  and o) = —sh(3)0(3)
* Set:
zi(u,0) =zx¢;j(u) =h*(xx¢p;—1)(2u) and

xj(u,0) =z xj0(u) = go* (z*¢;-1)(2u)

* The WT is then given by Wz = {z,(.,0),2,5(.,0)},<J0

Ref.: Fast WT, Mallat S, 89

* A WT can be interpreted as a deep cascade of

linear operator, which is approximatively verified
for the Gabor Wavelets.
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step by step of the construction(and

There is an oversampling B> () | e

Implementation of a WT
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sScattering Transform

* Scattering transform at scale ¢/ is the cascading of
complex WT with modulus non-linearity, followed
by & low pass-filtering ot Grody Dovariant Scattering, Mallat

SJQj — {33*¢J, with A\; ={7:,0:;},7: < J

TxPr, | * P,

T x x| %V, | * Or}

Qi/\?ﬁi\ order o

w order 1
v ?y | order 2

* Mathematically well defined for a large class of

Depth

wavelets.



O Modulus h > (0 Scattering coefficients

are only at the output

Ref.: Deep Roto-Translation Scattering
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8 Analytic wavelets and modulus?

° FO I any tran Slatio n S . Ref.: Group Invariant Scattering, Mallat S

/\

Low #(w) = € 93 (w)(w)
=3 B i)

n

. |
(iwg a)"
~ ) s
. |

/\

= €0 O & Y(w)

+ A modulus removes the phase!

Rectificatio — Phase artifact o
\ the infinitesimal generator

of translations is the derivative...
Modulu I /—\/

Real and

\W \\OX‘\ maginary Non-linear projection
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Informatlon lOSS Ref.: Mallat S, Bruna J

Reconstruction ¢

arg inf || Ssz — Ssy/|
Y

>

invariance up to
2° pixels




. DATA _
ENS Wavelets on Lie group

- Discovering more complex groups is necessary to build more

Ref.: Deep Roto-Translation Scattering

COmpleX invariantS: for Object Classification. EO and S Mallat

F XX v N

Translation Scattering does not see the difference

R* < SO5(R) x R? — ...

- A wavelet is defined by 1) & LQ(G), zﬁ(e) = () and can be
dilated via 9y = L)1

- Theorem: Let G be a compact Lie group, for appropriate
mother wavelet 7 and A then

Wax = {/ xaf*G Uxfrea
G

is an isometry and covariant with the action ot G

Ref.: Stein, E. M. Topics in harmonic

analysis related to the Littlewood-Paley theory.

- Proposition: V¥ almost commutes with deformations but is
not invariant to translation...

Ref.: Group Invariant Scattering, Mallat S
IW, L. |[| < C|7|]
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An ideal input for
a modern CNN
x — SJ ———CNN—— Deftormations
Lyx(u) =x(u—71(u))
- Scattering is stable: CJT )
|1Srz = Syl < llz =yl
- Linearize small deformations: Ref: Sealing the Seattering Transform;

Deep Hybrid Networks

1SsLex — Syall < CIVr|la]l R,
- Invariant by local translation:

o] < 27 = S;Lax ~ Sy

. For \,u, Sjx(u, ) has a topology that is structured by
S04 (R), and this structures the first layer also:

if YuVg € SO2(R), g.z(u) = (g~ 'u) then,
Sy(g.x2)(u, ) = Syx(g  u, g7 N\) = .55z (u, \)
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How much learning is really

1 ¢
re q u 1 re d ® Ref.: Deep Roto-Translation Scattering

for Object Classification. EO and S Mallat

Dataset Type Paper Accuracy
Caltech101 Scattering 79.9 '
Unsupervised Ask the locals 77.3
: Supervised DeepNet 91.4
CIFAR100 . Scattering | 56.8
e P — D E—
Unsupervised RFL 54.2
Supervised DeepNet 65.4
Identical
4 i § § Representation
10 1ImMages | | | )
101 classes |[CALTECH CIFAR| 5.10* images
256 x 256 color ima 29 Dlp,classes,
— X color images

: LEET . AT
Group representations |[ZSaCEswE=s
mpetitive with RS EmEE .

r 4 'l £ Ll &
are comp S & v TR

i S Yo T
% representations learned [EEsusBnw h
sl from data without labels

ERELOPEREE
=T P
AR RE =S
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Benchmarking

ImageNet

Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

X —— S;——ResNet ——

- Cascading a modern CNN leads to almost state-of-the-
art result on Imagenet2012:

Method Top1 | Top 5 | Params
AlexNet 56.9 80.1 61M
VGG-16 68.5 88.7 138M
Scat + Resnet-10 (ours) | 68.7 38.6 12.8M
Resnet-18 (ours) 68.9 88.8 11.7M
Resnet-200 78.3 94.2 64.7TM

- Demonstrates no loss of information + Less layers
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Shared Local Encoder

Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

AN

» V3 >

e

>

1 x 1 convolution

Wi

- Itis equivalent to encode the non-overlapping
scattering patches: the output of the 1x1 is a local
descriptor of an image that leads to AlexNet

performances.

Good generalization
on Caltechio1

W

Method Topl Top5
FV + FC 55.6 78.4
FV + SVM 54.3 74.3
AlexNet 56.9 30.1
Scat + SLE 57.0 79.6

Extremely constrained



- Adding geometric prior regularises the CNN input, in

] DATA i
ENS Benchmarking

Small data

Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

the particular case of limited samples situations,
without reducing the number of parameters.

 State-of-the-art results on STLio and CIFARI0:

STLio: 5k training, 8k testing, 10 classes

+100k unlabeled(not used!!)

Method Accuracy
Supervised methods

Scat + WRN 19-8 76.0 = 0.6
CNN 70.1 = 0.6
Unsupervised methods

Exemplar CNN 754+ 0.3
Stacked what-where AE 74.33
Hierarchical Matching Pursuit (HMP) 64.5+1
Convolutional K-means Network 60.1+1

Cifar1o, 10 classes
keeping 100, 500 and 1000 samples
and testing on 10k

Method 100 S00 1000
WRN 16-8 347 =08 | 465 £1.4 | 600 £1.8
Scat+ WRN 12-8 | 389 = 1.2 | 54.7£0.6 | 62.0x1.1
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Invariance to rotation

Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

- We evaluate the angular energy propagated for given

frequencies: o, w,.) > WA we, s we, )

10

N8+

3 06
=

1
£
-'CU"L

N2+

0o
-3 0 3
Wy I

+ They are all localised in the low-frequency domain:
invariance to rotation is learned. (supports symmetry
group hypothesis)
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- Multiscale Hiearchical CNN

- Can we structure the next layers?

Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, Smeulders AWM

- Introduce a CNN that is convolutional along each
direction, finally averaged:

Zl?j_|_1(2)1, ---anan+1) — /Oj(ivj SR wvj+1)(1}1, ...,?}j)

- For Z;, we refer to the variable v; as an attribute that
discriminates previously obtained tensor.

. W, performs an averaging along v;—2.
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Flattening the variability

» An explicit invariant of any translations along (v, ..., v;)

IS bllllt. Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, Smeulders AWM

- Completely structures the axis of the "channels" via
convolutions.

- It aims at mapping the symmetries of ®x = x; into the
translations along G, = R/, 5 < J.

Organizing the channels indexes

o
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Reducing the number of

parameters

Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, Smeulders AWM CIFARIO

MODEL # PARAMETERS % ACCURACY
HIEARCHICAL CNN 0.098M 01.43
HIEARCHICAL CNN (+) 0.34M 92.50
ALL-CNN 1.3M 92.75
RESNET 0.27M 91.25
NETWORK IN NETWORK 0.98M 91.20
WRN-STUDENT 0.17M 01.23

ThlS 1mplles an FITNET 2.5M 01.61

effective structuration CIFARIOO

MODEL # PARAMETERS % ACCURACY
HIEARCHICAL CNN 0.25M 62.01
HIEARCHICAL CNN (+) 0.89M 63.19
ALL-CNN 1.3M 66.29
NETWORK IN NETWORK 0.98M 64.32

FITNET 2.5M 64.96
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Organization of the

representation?

Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, Smeulders AWM

- We observe that representations at several layers are
translated:

Bird 1

il 11§ ‘

Bird 2

| —
aj i
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Conclusion

- Structuration should be the topic of future research to
improve Deep neural networks

- Check my webpage for softwares and papers: http://
www.di.ens.fr/~oyallon/

Thank youl


http://www.di.ens.fr/~oyallon/
http://www.di.ens.fr/~oyallon/

